Publications by authors named "Loryn J Bohne"

Background: β-AR (β-adrenergic receptor) stimulation regulates atrial electrophysiology and Ca homeostasis via cAMP-dependent mechanisms; however, enhanced β-AR signaling can promote atrial fibrillation (AF). CNP (C-type natriuretic peptide) can also regulate atrial electrophysiology through the activation of NPR-B (natriuretic peptide receptor B) and cGMP-dependent signaling. Nevertheless, the role of NPR-B in regulating atrial electrophysiology, Ca homeostasis, and atrial arrhythmogenesis is incompletely understood.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is highly prevalent in type 2 diabetes where it increases morbidity and mortality. Glucagon-like peptide (GLP)-1 receptor agonists are used in the treatment of type 2 diabetes (T2DM), but their effects on AF in T2DM are poorly understood. The present study demonstrates type 2 diabetic db/db mice are highly susceptible to AF in association with atrial electrical and structural remodeling.

View Article and Find Full Text PDF

Background Ibrutinib and acalabrutinib are Bruton tyrosine kinase inhibitors used in the treatment of B-cell lymphoproliferative disorders. Ibrutinib is associated with new-onset atrial fibrillation. Cases of sinus bradycardia and sinus arrest have also been reported following ibrutinib treatment.

View Article and Find Full Text PDF

Aims: Heart rate (HR) is a critical indicator of cardiac performance that is determined by sinoatrial node (SAN) function and regulation. Natriuretic peptides, including C-type NP (CNP), have been shown to modulate ion channel function in the SAN when applied exogenously. CNP is the only NP that acts as a ligand for natriuretic peptide receptor-B (NPR-B).

View Article and Find Full Text PDF

Atrial fibrillation (AF) is prevalent in common conditions and acquired forms of heart disease, including diabetes mellitus (DM), hypertension, cardiac hypertrophy, and heart failure. AF is also prevalent in aging. Although acquired heart disease is common in aging individuals, age is also an independent risk factor for AF.

View Article and Find Full Text PDF

Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia, a condition characterized by prominent ventricular ectopy in response to catecholamine stress, which can be reproduced on exercise stress testing (EST). However, reports of sudden cardiac death (SCD) have emerged in EST-negative individuals who have loss-of-function (LOF) RyR2 mutations. The clinical relevance of RyR2 LOF mutations including their pathogenic mechanism, diagnosis, and treatment are all unknowns.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is highly prevalent in diabetes mellitus (DM), yet the basis for this finding is poorly understood. Type 2 DM may be associated with unique patterns of atrial electrical and structural remodeling; however, this has not been investigated in detail.

Objective: The purpose of this study was to investigate AF susceptibility and atrial electrical and structural remodeling in type 2 diabetic db/db mice.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is prevalent in diabetes mellitus (DM); however, the basis for this is unknown. This study investigated AF susceptibility and atrial electrophysiology in type 1 diabetic Akita mice using in vivo intracardiac electrophysiology, high-resolution optical mapping in atrial preparations, and patch clamping in isolated atrial myocytes. qPCR and western blotting were used to assess ion channel expression.

View Article and Find Full Text PDF

A number of clinical studies have reported that diabetes mellitus (DM) is an independent risk factor for Atrial fibrillation (AF). After adjustment for other known risk factors including age, sex, and cardiovascular risk factors, DM remains a significant if modest risk factor for development of AF. The mechanisms underlying the increased susceptibility to AF in DM are incompletely understood, but are thought to involve electrical, structural, and autonomic remodeling in the atria.

View Article and Find Full Text PDF