Publications by authors named "Lorraine Toji"

High-throughput sequencing provides the means to determine the allelic decomposition for any gene of interest-the number of copies and the exact sequence content of each copy of a gene. Although many clinically and functionally important genes are highly polymorphic and have undergone structural alterations, no high-throughput sequencing data analysis tool has yet been designed to effectively solve the full allelic decomposition problem. Here we introduce a combinatorial optimization framework that successfully resolves this challenging problem, including for genes with structural alterations.

View Article and Find Full Text PDF

Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1).

View Article and Find Full Text PDF

Rett syndrome is a dominant X-linked disorder caused by point mutations (approximately 80%) or by deletions or insertions (approximately 15% to 18%) in the MECP2 gene. It is most common in females but lethal in males, with a distinctly different phenotype. Rett syndrome patients have severe neurological and behavioral problems.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3' untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing.

View Article and Find Full Text PDF

The Human Genetic Cell Repository sponsored by the National Institute of General Medical Sciences (NIGMS) contains more than 11,000 cell lines and DNA samples collected from numerous individuals. All of these cell lines and DNA samples are categorized into several collections representing a variety of disease states, chromosomal abnormalities, heritable diseases, distinct human populations, and apparently healthy individuals. Many of these cell lines have previously been studied with detailed conventional cytogenetic analyses, including G-banded karyotyping and fluorescence in situ hybridization.

View Article and Find Full Text PDF

Duchenne and Becker muscular dystrophies (DMD/BMD) are allelic X-linked recessive disorders that affect approximately 1 in 3500 and 1 in 20,000 male individuals, respectively. Approximately 65% of patients with DMD have deletions, 7% to 10% have duplications, and 25% to 30% have point mutations in one or more of the 79 exons of the dystrophin gene. Most clinical genetics laboratories test for deletions, and some use technologies that can detect smaller mutations and duplications.

View Article and Find Full Text PDF
Article Synopsis
  • Pharmacogenetic testing is increasingly used, but there is a lack of quality control materials covering important genetic variations typically assessed.
  • The CDC's Genetic Testing Reference Material Coordination Program has created a panel of 107 genomic DNA reference materials focusing on five key gene loci commonly included in these tests.
  • The study found consistent results across multiple laboratories, with variations arising mainly from assay design and nomenclature, and additional testing of nine other pharmacogenetic loci was also conducted.
View Article and Find Full Text PDF

Many recessive genetic disorders are found at a higher incidence in people of Ashkenazi Jewish (AJ) descent than in the general population. The American College of Medical Genetics and the American College of Obstetricians and Gynecologists have recommended that individuals of AJ descent undergo carrier screening for Tay Sachs disease, Canavan disease, familial dysautonomia, mucolipidosis IV, Niemann-Pick disease type A, Fanconi anemia type C, Bloom syndrome, and Gaucher disease. Although these recommendations have led to increased test volumes and number of laboratories offering AJ screening, well-characterized genomic reference materials are not publicly available.

View Article and Find Full Text PDF

Well-characterized reference materials (RMs) are integral in maintaining clinical laboratory quality assurance for genetic testing. These RMs can be used for quality control, monitoring of test performance, test validation, and proficiency testing of DNA-based genetic tests. To address the need for such materials, the Centers for Disease Control and Prevention established the Genetic Testing Reference Material Coordination Program (GeT-RM), which works with the genetics community to improve public availability of characterized RMs for genetic testing.

View Article and Find Full Text PDF

The number of different laboratories that perform genetic testing for cystic fibrosis is increasing. However, there are a limited number of quality control and other reference materials available, none of which cover all of the alleles included in commercially available reagents or platforms. The alleles in many publicly available cell lines that could serve as reference materials have neither been confirmed nor characterized.

View Article and Find Full Text PDF

To investigate the mechanism by which UV irradiation causes S-phase-dependent chromosome aberrations and thereby genomic instability, we have developed an assay to study the DNA structure of replication forks (RFs) in UV-irradiated mammalian cells, using pulse-field gel electrophoresis for the DNA analysis. We demonstrate that replication stalling at UV-induced pyrimidine dimers results in the formation of single-strand DNA (ssDNA) regions and incomplete RF structures. In normal and in nucleotide-excision-repair (NER)-defective xeroderma pimentosum (XP) cells, stalling at dimers is rapid and prolonged and recovery depends on dimer repair or bypass.

View Article and Find Full Text PDF