Publications by authors named "Lorraine Robb"

Dysregulation of the "intrinsic" apoptotic pathway is associated with the development of cancer and autoimmune disease. Bak and Bax are two proapoptotic members of the Bcl-2 protein family with overlapping, essential roles in the intrinsic apoptotic pathway. Their activity is critical for the control of cell survival during lymphocyte development and homeostasis, best demonstrated by defects in thymic T-cell differentiation and peripheral lymphoid homeostasis caused by their combined loss.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) frequently relapses after initial treatment. Drug resistance in AML has been attributed to high levels of the anti-apoptotic Bcl-2 family members Bcl-x(L) and Mcl-1. Here we report that removal of Mcl-1, but not loss or pharmacological blockade of Bcl-x(L), Bcl-2, or Bcl-w, caused the death of transformed AML and could cure disease in AML-afflicted mice.

View Article and Find Full Text PDF

B cell behavior is fine-tuned by internal regulatory mechanisms and external cues such as cytokines and chemokines. Suppressor of cytokine signaling 3 (SOCS3) is a key regulator of STAT3-dependent cytokine responses in many cell types and has been reported to inhibit CXCL12-induced retention of immature B cells in the bone marrow. Using mice with SOCS3 exclusively deleted in the B cell lineage (Socs3(Δ/Δ)mb1cre(+)), we analyzed the role of SOCS3 in the response of these cells to CXCL12 and the STAT3-inducing cytokines IL-6 and IL-21.

View Article and Find Full Text PDF

Rhou encodes a Cdc42-related atypical Rho GTPase that influences actin organization in cultured cells. In mouse embryos at early-somite to early-organogenesis stages, Rhou is expressed in the columnar endoderm epithelium lining the lateral and ventral wall of the anterior intestinal portal. During foregut development, Rhou is downregulated in regions where the epithelium acquires a multilayered morphology heralding the budding of organ primordia.

View Article and Find Full Text PDF

The cooperative nature of tetraspanin-tetraspanin interactions in membrane organization suggests functional overlap is likely to be important in tetraspanin biology. Previous functional studies of the tetraspanins CD37 and Tssc6 in the immune system found that both CD37 and Tssc6 regulate T cell proliferative responses in vitro. CD37(-/-) mice also displayed a hyper-stimulatory dendritic cell phenotype and dysregulated humoral responses.

View Article and Find Full Text PDF

Rationale: The cardiac gene regulatory network (GRN) is controlled by transcription factors and signaling inputs, but network logic in development and it unraveling in disease is poorly understood. In development, the membrane-tethered signaling ligand Neuregulin (Nrg)1, expressed in endocardium, is essential for ventricular morphogenesis. In adults, Nrg1 protects against heart failure and can induce cardiomyocytes to divide.

View Article and Find Full Text PDF

Fas ligand (FasL), an apoptosis-inducing member of the TNF cytokine family, and its receptor Fas are critical for the shutdown of chronic immune responses and prevention of autoimmunity. Accordingly, mutations in their genes cause severe lymphadenopathy and autoimmune disease in mice and humans. FasL function is regulated by deposition in the plasma membrane and metalloprotease-mediated shedding.

View Article and Find Full Text PDF

Background: Histone methylation is thought to be central to the epigenetic mechanisms that maintain and confine cellular identity in multi-cellular organisms. To examine epigenetic roles in cellular homeostasis, we conditionally mutated the histone 3 lysine 4 methyltransferase, Mll2, in embryonic stem (ES) cells, during development and in adult mice using tamoxifen-induced Cre recombination.

Results: In ES cells, expression profiling unexpectedly revealed that only one gene, Magoh2, is dependent upon Mll2 and few other genes were affected.

View Article and Find Full Text PDF

Hormonal contraceptives are unsuitable for many women; thus, the development of new, nonhormonal contraceptives is of great interest. In women, uterine epithelial expression of interleukin 11 (IL11) and its receptor (IL11RA) suggests IL11 is critical for blastocyst attachment during implantation. Il11ra-deficient mice are infertile due to a defective decidualization response to the blastocyst, leading to total pregnancy loss.

View Article and Find Full Text PDF

Background & Aims: Gastric cancer is the second most common cause of cancer-related mortality worldwide, mainly as a result of late-stage detection. Interleukin (IL)-11 is a multifunctional cytokine reported to be up-regulated in human gastric cancer.

Methods: We investigated the importance of IL-11 in gastric cancer progression by examining its role in a variety of mouse gastric tumor models, as well as in nonneoplastic and tumor tissues taken from gastric cancer patients.

View Article and Find Full Text PDF

The mechanism by which Suppressor of Cytokine Signaling-3 (SOCS3) negatively regulates cytokine signaling has been widely investigated using over-expression studies in cell lines and is thought to involve interactions with both the gp130 receptor and JAK1. Here, we compare the endogenous JAK/STAT signaling pathway downstream of Leukemia Inhibitory Factor (LIF) signaling in wild type (WT) Embryonic Stem (ES) cells and in ES cells lacking either the entire Socs3 gene or bearing a truncated form of SOCS3 (SOCS3DeltaSB) lacking the C-terminal SOCS box motif (SOCS3(DeltaSB/DeltaSB)). In SOCS3(DeltaSB/DeltaSB) cells phosphorylated JAK1 accumulated at much higher levels than in WT cells or even cells lacking SOCS3 (SOCS3(-/-)).

View Article and Find Full Text PDF

Loss of Dkk1 results in ectopic WNT/beta-catenin signalling activity in the anterior germ layer tissues and impairs cell movement in the endoderm of the mouse gastrula. The juxtaposition of the expression domains of Dkk1 and Wnt3 is suggestive of an antagonist-agonist interaction. The downregulation of Dkk1 when Wnt3 activity is reduced reveals a feedback mechanism for regulating WNT signalling.

View Article and Find Full Text PDF

Murine granulocytic cells, in becoming leukemic, need to acquire enhanced self-generation and a capacity for autocrine growth stimulation. Mice transplanted with bone marrow cells transduced with the Mixl1 homeobox gene develop a very high frequency of myeloid leukemia derived from the transduced cells. Preleukemic mice contained a high frequency of transduced clonogenic granulocytic cells.

View Article and Find Full Text PDF

Blastocyst implantation is a critical stage in the establishment of pregnancy. Leukemia inhibitory factor (LIF) is essential for mouse blastocyst implantation and also plays a role in human pregnancy. We examined the effect of a potent LIF antagonist (LA) on mouse implantation.

View Article and Find Full Text PDF

Carbohydrate modification of proteins includes N-linked and O-linked glycosylation, proteoglycan formation, glycosylphosphatidylinositol anchor synthesis, and O-GlcNAc modification. Each of these modifications requires the sugar nucleotide UDP-GlcNAc, which is produced via the hexosamine biosynthesis pathway. A key step in this pathway is the interconversion of GlcNAc-6-phosphate (GlcNAc-6-P) and GlcNAc-1-P, catalyzed by phosphoglucomutase 3 (Pgm3).

View Article and Find Full Text PDF

Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of granulocyte-colony stimulating factor (G-CSF) signaling in vivo. SOCS proteins regulate cytokine signaling by binding, via their SH2 domains, to activated cytokine receptors or their associated Janus kinases. In addition, they bind to the elongin B/C ubiquitin ligase complex via the SOCS box.

View Article and Find Full Text PDF

Cytokines are an integral part of the adaptive and innate immune responses. The signalling pathways triggered by receptor engagement translate exposure to cytokine into a coordinated biological response. To contain these responses, the initiation, duration and magnitude of the signal is controlled at multiple levels.

View Article and Find Full Text PDF

The transcription factor Gata-3 is a defining marker of the 'luminal' subtypes of breast cancer. To gain insight into the role of Gata-3 in breast epithelial development and oncogenesis, we have explored its normal function within the mammary gland by conditionally deleting Gata-3 at different stages of development. We report that Gata-3 has essential roles in the morphogenesis of the mammary gland in both the embryo and adult.

View Article and Find Full Text PDF

During mouse gastrulation, endoderm cells of the dorsal foregut are recruited ahead of the ventral foregut and move to the anterior region of the embryo via different routes. Precursors of the anterior-most part of the foregut and those of the mid- and hind-gut are allocated to the endoderm of the mid-streak-stage embryo, whereas the precursors of the rest of the foregut are recruited at later stages of gastrulation. Loss of Mixl1 function results in reduced recruitment of the definitive endoderm, and causes cells in the endoderm to remain stationary during gastrulation.

View Article and Find Full Text PDF

We have previously demonstrated that STAT3 hyperactivation via the interleukin 6 (IL-6) cytokine family receptor gp130 in gp130 (Y757F/Y757F) mice leads to numerous hematopoietic and lymphoid pathologies, including neutrophilia, thrombocytosis, splenomegaly, and lymphadenopathy. Because IL-6 and IL-11 both signal via a gp130 homodimer, we report here a genetic approach to dissect their individual roles in these pathologies. Neutrophilia and thrombocytosis were absent in gp130 (Y757F/Y757F) mice lacking either IL-6 (gp130 (Y757F/Y757F): IL-6 (-/-)) or the IL-11 receptor alpha subunit (gp130 (Y757F/Y757F): IL-11Ralpha1 (-/-)), and this was associated with a normalized bone marrow compartment.

View Article and Find Full Text PDF

Mixl1, the sole murine homologue of the Xenopus Mix/Bix family of homeobox transcription factors, is essential for the patterning of axial mesendodermal structures during early embryogenesis. Gene targeting and overexpression studies have implicated Mixl1 as a regulator of hematopoiesis arising in differentiating embryonic stem cells. To assess the role of Mixl1 in the regulation of adult hematopoiesis, we overexpressed Mixl1 in murine bone marrow using a retroviral transduction/transplantation model.

View Article and Find Full Text PDF

IL-11 expressed by endometrial stromal cells is crucial for normal pregnancy. IL-11 receptor alpha (IL-11Ralpha) null mice are infertile due to abnormal development of the placenta. In these mice, the mesometrial decidual tissue, which is the site of trophoblast invasion, thins and disappears at mid-pregnancy.

View Article and Find Full Text PDF

We investigated the role of the hematopoietic-specific tetraspanin superfamily member, TSSC6, in platelet function using wild-type mice and TSSC6-deficient mice. TSSC6 is expressed on the surface of murine platelets and is up-regulated by thrombin stimulation, indicating an intracellular pool of TSSC6. Immunoprecipitation/Western blot studies reveal a constitutive physical association of TSSC6 with the integrin alpha(IIb)beta(3) complex under strong detergent conditions.

View Article and Find Full Text PDF

The suppressor of cytokine-signaling (SOCS) proteins act as negative-feedback inhibitors of cytokine and growth-factor-induced signal transduction. In vivo studies have implicated SOCS3 as a negative regulator of signaling downstream of gp130, the receptor subunit shared by IL-6-like cytokines. Mice lacking SOCS3 die at midgestation because of placental failure, and SOCS3 ablation in a cell-type-specific manner results in changes in the functional outcome of gp130 signaling in response to IL-6.

View Article and Find Full Text PDF

Background: The NANOG gene, a member of the homeobox family of DNA binding transcription factors, was recently identified in a screen for pluripotency-promoting genes. NANOG overexpression in murine embryonic stem cells is sufficient to maintain self-renewal and to block differentiation. The NANOG gene is located on human chromosome 12p13, a region frequently duplicated in human tumors of germ cell origin and in cultured human embryonic stem cells.

View Article and Find Full Text PDF