Publications by authors named "Lorraine P Yomano"

Lignocellulosic biomass provides attractive nonfood carbohydrates for the production of ethanol, and dilute acid pretreatment is a biomass-independent process for access to these carbohydrates. However, this pretreatment also releases volatile and nonvolatile inhibitors of fermenting microorganisms. To identify unique gene products contributing to sensitivity/tolerance to nonvolatile inhibitors, ethanologenic Escherichia coli strain LY180 was adapted for growth in vacuum-treated sugarcane bagasse acid hydrolysate (VBHz) lacking furfural and other volatile inhibitors.

View Article and Find Full Text PDF

Hydrolysate-resistant Escherichia coli SL100 was previously isolated from ethanologenic LY180 after sequential transfers in AM1 medium containing a dilute acid hydrolysate of sugarcane bagasse and was used as a source of resistance genes. Many genes that affect tolerance to furfural, the most abundant inhibitor, have been described previously. To identify genes associated with inhibitors other than furfural, plasmid clones were selected in an artificial hydrolysate that had been treated with a vacuum to remove furfural.

View Article and Find Full Text PDF

Escherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain now ferments 10% xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% xylose.

View Article and Find Full Text PDF

Expression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters.

View Article and Find Full Text PDF

Furfural is an inhibitory side product formed during the depolymerization of hemicellulose with mineral acids. In Escherichia coli, furfural tolerance can be increased by expressing the native fucO gene (encoding lactaldehyde oxidoreductase). This enzyme also catalyzes the NADH-dependent reduction of furfural to the less toxic alcohol.

View Article and Find Full Text PDF

Pretreatments such as dilute acid at elevated temperature are effective for the hydrolysis of pentose polymers in hemicellulose and also increase the access of enzymes to cellulose fibers. However, the fermentation of resulting syrups is hindered by minor reaction products such as furfural from pentose dehydration. To mitigate this problem, four genetic traits have been identified that increase furfural tolerance in ethanol-producing Escherichia coli LY180 (strain W derivative): increased expression of fucO, ucpA, or pntAB and deletion of yqhD.

View Article and Find Full Text PDF

Furfural is an inhibitory side product formed during the depolymerization of hemicellulose by mineral acids. Genomic libraries from three different bacteria (Bacillus subtilis YB886, Escherichia coli NC3, and Zymomonas mobilis CP4) were screened for genes that conferred furfural resistance on plates. Beneficial plasmids containing the thyA gene (coding for thymidylate synthase) were recovered from all three organisms.

View Article and Find Full Text PDF

Expression arrays were used to identify 4 putative oxidoreductases that were upregulated (>3-fold) by furfural (15 mM, 15 min). Plasmid expression of one (ucpA) increased furan tolerance in ethanologenic strain LY180 and wild-type strain W. Deleting ucpA decreased furfural tolerance.

View Article and Find Full Text PDF

Escherichia coli KO11 (ATCC 55124) was engineered in 1990 to produce ethanol by chromosomal insertion of the Zymomonas mobilis pdc and adhB genes into E. coli W (ATCC 9637). KO11FL, our current laboratory version of KO11, and its parent E.

View Article and Find Full Text PDF

Ethanologenic Escherichia coli strain KO11 was sequentially engineered to contain the Klebsiella oxytoca cellobiose phosphotransferase genes (casAB) as well as a pectate lyase (pelE) from Erwinia chrysanthemi, yielding strains LY40A (casAB) and JP07 (casAB pelE), respectively. To obtain an effective secretion of PelE, the Sec-dependent pathway out genes from E. chrysanthemi were provided on a cosmid to strain JP07 to construct strain JP07C.

View Article and Find Full Text PDF

A wide variety of commercial products can be potentially made from monomeric sugars produced by the dilute acid hydrolysis of lignocellulosic biomass. However, this process is accompanied by side products such as furfural that hinder microbial growth and fermentation. To investigate the mechanism of furfural inhibition, mRNA microarrays of an ethanologenic strain of Escherichia coli (LY180) were compared immediately prior to and 15 min after a moderate furfural challenge.

View Article and Find Full Text PDF

Pyruvate decarboxylase (PDC), an enzyme central to homoethanol fermentation, catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde with release of carbon dioxide. PDC enzymes from diverse organisms have different kinetic properties, thermal stability and codon usage that are likely to offer unique advantages for the development of desirable Gram-positive biocatalysts for use in the ethanol industry. To examine this further, pdc genes from bacteria to yeast were expressed in the Gram-positive host Bacillus megaterium.

View Article and Find Full Text PDF