Motivation: Most sequence alignment techniques make use of exact -mer hits, called seeds, as anchors to optimize alignment speed. A large number of bioinformatics tools employing seed-based alignment techniques, such as , use a single value of per sequencing technology, without a strong guarantee that this is the best possible value. Given the ubiquity of sequence alignment, identifying values of that lead to more sensitive alignments is thus an important task.
View Article and Find Full Text PDFGenomes are characterized by large regions of homogeneous base compositions known as isochores. The latter are divided into GC-poor and GC-rich classes linked to distinct functional and structural properties. Several studies have addressed how isochores shape function and structure.
View Article and Find Full Text PDFSummary: State-of-the-art repeat analysis tools rely on extending maximal repeated pairs to enumerate maximal k-mismatch repeats. These pairs can be quadratic in n, the length of the input sequence, and thus greedy heuristics are applied to speed up the extension. Here, we introduce supermaximal k-mismatch repeats, which are linear in n and capture all maximal k-mismatch repeats: every maximal k-mismatch repeat is a substring of some supermaximal k-mismatch repeat.
View Article and Find Full Text PDFMotivation: Conserved non-coding elements (CNEs) represent an enigmatic class of genomic elements which, despite being extremely conserved across evolution, do not encode for proteins. Their functions are still largely unknown. Thus, there exists a need to systematically investigate their roles in genomes.
View Article and Find Full Text PDFBMC Genomics
January 2017
Background: A fundamental assumption of all widely-used multiple sequence alignment techniques is that the left- and right-most positions of the input sequences are relevant to the alignment. However, the position where a sequence starts or ends can be totally arbitrary due to a number of reasons: arbitrariness in the linearisation (sequencing) of a circular molecular structure; or inconsistencies introduced into sequence databases due to different linearisation standards. These scenarios are relevant, for instance, in the process of multiple sequence alignment of mitochondrial DNA, viroid, viral or other genomes, which have a circular molecular structure.
View Article and Find Full Text PDFBMC Bioinformatics
November 2016
Background: Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size.
View Article and Find Full Text PDF