Thiamine deficiency (TD) is a model of neurodegeneration induced by mild impairment of oxidative metabolism. TD produces time-dependent glial activation, inflammation, oxidative stress, altered metabolism of amyloid precursor protein (APP), exacerbation of plaque formation from APP, and finally, selective neuron death in specific brain regions. The sub-medial thalamic nucleus (SmTN) is the most sensitive region to TD.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2006
Neuropsychiatric systemic lupus erythematosus, which often entails cognitive disturbances and memory loss, has become a major complication for lupus patients. Previously, we developed a murine model of neuropsychiatric lupus based on Abs that cross-react with dsDNA and the NMDA receptor (NMDAR). We showed that these murine Abs impair cognition when they access the CNS through a breach in the blood-brain barrier (BBB) triggered by lipopolysaccharide.
View Article and Find Full Text PDFClassic immunologic teaching describes the brain as an immunologically privileged site. Studies of neuroimmunology have focused for many years almost exclusively on multiple sclerosis, a disease in which inflammatory cells actually infiltrate brain tissue, and the rodent model of this disease, experimental allergic encephalitis. Over the past decade, however, increasingly, brain-reactive antibodies have been demonstrated in the serum of patients with numerous neurological diseases.
View Article and Find Full Text PDFSystemic lupus erythematosus is an autoimmune disease in which most patients express Abs that bind double-stranded DNA. Recent work has shown that a subset of lupus Abs can crossreact with the NR2A and NR2B subunits of the NMDA receptor. This receptor is expressed in neurons throughout the brain but is at highest density within cells of the hippocampus, amygdala, and hypothalamus.
View Article and Find Full Text PDFSeptin 5, a parkin substrate, is a vesicle- and membrane-associated protein that plays a significant role in inhibiting exocytosis. The regulatory function of Septin 5 in dopaminergic (DAergic) neurons of substantia nigra (SN), maintained at relatively low levels, has not yet been delineated. As loss of function mutations of parkin are the principal cause of a familial Parkinson's disease, a prevailing hypothesis is that the loss of parkin activity results in accumulation of Septin 5 which confers neuron-specific toxicity in SN-DAergic neurons.
View Article and Find Full Text PDFInflammatory/immune processes are important in the pathogenesis of neurodegenerative diseases. Thiamine deficiency (TD) models the region selective neuronal loss in brain that accompanies mild impairment of oxidative metabolism. TD induces well-defined alterations in neurons, microglia, astrocytes, and endothelial cells.
View Article and Find Full Text PDFAbnormalities in oxidative processes, region-selective neuron loss, inflammation and diminished activity of thiamine-dependent enzymes characterize age-related neurodegenerative diseases. Thiamine deficiency (TD) models the selective neurodegeneration that accompanies mild impairment of oxidative metabolism. As in human neurodegenerative diseases, alterations in multiple cell types accompany the TD-induced neurodegeneration.
View Article and Find Full Text PDFPatients with lupus (SLE) experience progressive cognitive loss without evidence of CNS vascular disease or inflammation. SLE patients produce anti-DNA antibodies that crossreact with NMDA receptors and are capable of mediating excitotoxic death. We now show that mice induced by antigen to express these antibodies have no neuronal damage until breakdown of the blood-brain barrier occurs.
View Article and Find Full Text PDFNeuronal death is a prominent, but poorly understood, pathological hallmark of prion disease. Notably, in the absence of the cellular prion protein (PrPC), the disease-associated isoform, PrPSc, appears not to be intrinsically neurotoxic, suggesting that PrPC itself may participate directly in the prion neurodegenerative cascade. Here, cross-linking PrPC in vivo with specific monoclonal antibodies was found to trigger rapid and extensive apoptosis in hippocampal and cerebellar neurons.
View Article and Find Full Text PDFCell Mol Neurobiol
October 2003
Transection of the medial forebrain bundle caused apoptosis of dopamine neurons in the rat substantia nigra. Immunohistochemical localization of activated microglia and tyrosine hydroxylase in the axotomized substantia nigra showed that activation of microglia was rapid and OX-6 (MHC-II marker)-positive and ED1 (lysosomal phagocytic marker)-positive microglia were apposed to structurally intact tyrosine hydroxylase-positive dopamine neurons, indicating microglial phagocytosis of degenerating dopamine neurons. The occurrence of microglial phagocytosis at early stages of apoptosis may indicate the evolution of apoptosis into an irreversible state.
View Article and Find Full Text PDFNeurodegenerative diseases are characterized by abnormalities in oxidative processes, region-selective neuron loss, and diminished thiamine-dependent enzymes. Thiamine deficiency (TD) diminishes thiamine dependent enzymes, alters mitochondrial function, impairs oxidative metabolism, and causes selective neuronal death. In mice, the time course of TD-induced changes in neurons and microglia were determined in the brain region most sensitive to TD.
View Article and Find Full Text PDFMicroglial activation was investigated in the brains of young (3 months old) and older (9-12 months old) mice following administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Tyrosine hydroxylase (TH)-positive neuronal loss differed significantly between young and older mice. Importantly, the two groups clearly demonstrated a distinct microglial activation pattern.
View Article and Find Full Text PDFOxidative stress (OS) is a primary pathogenic mechanism of nigral dopaminergic (DA) cell death in Parkinson's disease (PD). Oxidative damage, Lewy body formation and decreased mitochondrial complex I activity are the consistent pathological findings in PD. In nigral DA neurons, however, it is unknown whether any gene expressional changes induced by OS contribute to the typical PD pathology.
View Article and Find Full Text PDFOur past work has shown that the C-terminal fragment of amyloid precursor protein (APP) translocated to the nucleus in neurons destined for delayed excitotoxic degeneration. To test whether nuclear APP fragments also play a role in the progressive loss of dopaminergic (DA) substantia nigra compacta (SNc) neurons, we performed unilateral medial forebrain bundle (MFB) transection on APP wild type (WT) and on mice with disruption of the APP gene (KO). In WT mice immunoreactivity for APP C-terminal, beta-amyloid and Alz90 epitopes appeared in the nuclei of axotomized DA neurons at 3 days post-lesion (dpl), persisted at 7 dpl and was absent in 14 dpl mice.
View Article and Find Full Text PDFCells cultured from Alzheimer disease leptomeninges or skin were grafted into the cortex of adult thymectomized rats. At 3 days post-implant, plaque-like aggregates were found in the cortex, corpus callosum, septum and caudate nucleus. These structures were immunopositive for human amyloid precursor protein (APP), human amyloid beta peptide (Abeta), cathepsin D, apolipoprotein E and ubiquitin.
View Article and Find Full Text PDFFocal microglial activation and progressive dopaminergic neurodegeneration in substantia nigra compacta (SNc) have characterized Parkinson's disease (PD). We have hypothesized that the microglial response may be provoked by molecular signals from chronically stressed SNc neurons. To test whether amyloid precursor protein (APP) could serve as such a signal, we evaluated microglial activation in SN after unilateral transection of the medial forebrain bundle (MFB) in mice either wild-type (WT) or null (KO) for APP.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) shows potent neuroprotective as well as neurorestorative actions on the adult neurons impacted in animal models of Parkinson's disease (PD). Long-term pharmaco-physiological effects of GDNF on developing dopaminergic (DA) neurons have not yet been explored because of technical difficulties in producing prolonged cell type-specific delivery of this neurotrophic factor in mammalian embryonic brain. The current studies used our previously characterized 9.
View Article and Find Full Text PDF