Publications by authors named "Lorquin J"

Palytoxin is considered one of the most potent biotoxins. As palytoxin-induced cancer cell death mechanisms remain to be elucidated, we investigated this effect on various leukemia and solid tumor cell lines at low picomolar concentrations. As palytoxin did not affect the viability of peripheral blood mononuclear cells (PBMC) from healthy donors and did not create systemic toxicity in zebrafish, we confirmed excellent differential toxicity.

View Article and Find Full Text PDF

Pyomelanin is a brown-black phenolic polymer and results from the oxidation of homogentisic acid (HGA) in the L-tyrosine pathway. As part of the research for natural and active ingredients issued from realistic bioprocesses, this work re-evaluates the HGA pigment and makes an updated inventory of its syntheses, microbial pathways, and properties, with tracks and recent advances for its large-scale production. The mechanism of the HGA polymerization is also well documented.

View Article and Find Full Text PDF

Pyomelanin is a polymer of homogentisic acid synthesized by microorganisms. This work aimed to develop a production process and evaluate the quality of the pigment. Three procedures have been elaborated and optimized, (1) an HGA-Mn chemical autoxidation (Pyo yield 0.

View Article and Find Full Text PDF

Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D) and meta involving a catechol 2,3 dioxygenase (C23D). Our work aimed at elucidating the phenol-degradation pathway in the hyperthermophilic archaea Sulfolobus solfataricus 98/2.

View Article and Find Full Text PDF

In this paper, the hydrogen (H2)-dependent discoloration of azo dye amaranth by Shewanella oneidensis MR-1 was investigated. Experiments with hydrogenase-deficient strains demonstrated that periplasmic [Ni-Fe] hydrogenase (HyaB) and periplasmic [Fe-Fe] hydrogenase (HydA) are both respiratory hydrogenases of dissimilatory azoreduction in S. oneidensis MR-1.

View Article and Find Full Text PDF

A moderately halophilic, Gram-stain-negative, non-sporulating bacterium designed as strain TYRC17(T) was isolated from olive-processing effluents. The organism was a straight rod, motile by means of peritrichous flagella and able to respire both oxygen and nitrate. Growth occurred with 0-25 % (w/v) NaCl (optimum, 7 %), at pH 5-11 (optimum, pH 7.

View Article and Find Full Text PDF

In this study, the biomass and exopolysaccharides (EPS) production in co-cultures of microalgae/cyanobacteria and macromycetes was evaluated as a technology for producing new polysaccharides for medical and/or industrial application. Based on biomass and EPS productivity of monocultures, two algae and two fungi were selected and cultured in different co-culture arrangements. The hydrosoluble EPS fractions from mono- and co-cultures were characterized by ¹³C NMR spectroscopy and gas chromatography coupled to mass spectrometry and compared.

View Article and Find Full Text PDF

GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al.

View Article and Find Full Text PDF

Hydroxytyrosol (HTyr) is a potent natural antioxidant found in olive mill wastewaters. Bacterial conversion of 4-tyrosol (2-(4-hydroxyphenyl)-ethanol) to HTyr was reported in a limited number of bacterial species including Pseudomonas aeruginosa. In this work, we studied this conversion, taking as a model the newly isolated Halomonas sp.

View Article and Find Full Text PDF

Aims: To isolate a new Halomonas sp. strain capable of degrading tyrosol, a toxic compound present in olive mill wastewater, through the homogentisic acid (HGA) pathway.

Methods And Results: A moderately halophilic Gram-negative bacterium belonging to the Halomonas genus and designated strain TYRC17 was isolated from olive processing effluents.

View Article and Find Full Text PDF

This paper reports the characterization of a Halomonas sp. strain (named HTB24) isolated from olive-mill wastewater and capable of transforming tyrosol into hydroxytyrosol (HT) and 3,4-dihydroxyphenylacetic acid (DHPA) in hypersaline conditions. This is the first time that a halophile has been shown to perform such reactions.

View Article and Find Full Text PDF

A halophilic, Gram-negative, motile, non-sporulating bacterium designated strain FB1T was isolated from a wine-barrel-decalcification wastewater. The organism comprises straight rods and has a strictly respiratory metabolism with O2. Strain FB1T grows optimally at 20-30 degrees C and 5-6% NaCl.

View Article and Find Full Text PDF

A collection of rhizobia isolated from Acacia tortilis subsp. raddiana from various sites in the North and South of Sahara was analyzed for their diversity at both taxonomic and symbiotic levels. On the basis of whole cell protein (SDS-PAGE) and 16S rDNA sequence analysis, most of the strains were found to belong to the Sinorhizobium and Mesorhizobium genera where they may represent several different genospecies.

View Article and Find Full Text PDF

We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O.

View Article and Find Full Text PDF

We determined the structures of Nod factors produced by six different Bradyrhizobium sp. strains nodulating the legume tree Acacia albida (syn. Faidherbia albida).

View Article and Find Full Text PDF

A carotenoid biosynthesis gene cluster involved in canthaxanthin production was isolated from the photosynthetic Bradyrhizobium sp. strain ORS278. This cluster includes five genes identified as crtE, crtY, crtI, crtB, and crtW that are organized in at least two operons.

View Article and Find Full Text PDF

We obtained nine bacterial isolates from root or collar nodules of the non-stem-nodulated Aeschynomene species A. elaphroxylon, A. uniflora, or A.

View Article and Find Full Text PDF

We have determined the structures of Nod factors produced by strains representative of Sinorhizobium teranga bv. acaciae and the so-called cluster U from the Rhizobium loti branch, two genetically different symbionts of particular Acacia species. Compounds from both strains were found to be similar, i.

View Article and Find Full Text PDF

Canthaxanthin (4,4(prm1)-diketo-(beta)-carotene) is produced as the major carotenoid pigment by orange- and dark-pink-pigmented bacteriochlorophyll-containing Bradyrhizobium strains isolated from stem nodules of Aeschynomene species. These two new pigmentation groups differ from the well-studied strain BTAi1, which accumulates spirilloxanthin as the sole carotenoid.

View Article and Find Full Text PDF

It has been shown that various glutathione transferases can synthesize leukotriene C4, or its methyl ester, from glutathione and leukotriene A4. We questioned whether the same enzymes could be used to resolve racemic leukotriene A4 methyl ester (more easily prepared than the optically active enantiomer) and to produce leukotriene C4 methyl ester selectively. We present in this paper a study of the enantioselectivity of some rat liver glutathione transferase isozymes and of the glutathione transferase of human placenta for the leukotriene A4 methyl ester isomers.

View Article and Find Full Text PDF