Rationale: Characterization of Regolith And Trace Economic Resources (CRATER), an Orbitrap™-based laser desorption mass spectrometry instrument designed to conduct high-precision, spatially resolved analyses of planetary materials, is capable of answering outstanding science questions about the Moon's formation and the subsequent processes that have modified its (sub)surface.
Methods: Here, we describe the baseline design of the CRATER flight model, which requires <20 000 cm volume, <10 kg mass, and <60 W peak power. The analytical capabilities and performance metrics of a prototype that meets the full functionality of the flight model are demonstrated.
Studies of psychrophilic life on Earth provide chemical clues as to how extraterrestrial life could maintain viability in cryogenic environments. If living systems in ocean worlds ( Enceladus) share a similar set of 3-mer and 4-mer peptides to the psychrophile on Earth, spaceflight technologies and analytical methods need to be developed to detect and sequence these putative biosignatures. We demonstrate that laser desorption mass spectrometry, as implemented by the CORALS spaceflight prototype instrument, enables the detection of protonated peptides, their dimers, and metal adducts.
View Article and Find Full Text PDFRare high-He/He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth's interior. Only high-He/He OIB exhibit anomalous W-an isotopic signature inherited during the earliest history of Earth-supporting an ancient origin of high He/He. However, it is not understood why some OIB host anomalous W while others do not.
View Article and Find Full Text PDF