Publications by authors named "Lori T Raetzman"

The female reproductive system ages before any other physiological system, making it a sensitive indicator of aging. Early reproductive aging is associated with the early onset of infertility and an increased risk of several diseases. During aging, systemic and reproductive oxidative stress and inflammation levels increase through inflammasome activation, leading to ovarian follicle loss.

View Article and Find Full Text PDF

The common clownfish, Amphiprion ocellaris, is an iconic coral reef fish, ubiquitous in the marine aquarium hobby and useful for studying a variety of biological processes (e.g., mutual symbiosis, ultraviolet vision, and protandrous sex change).

View Article and Find Full Text PDF

Background: Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS).

View Article and Find Full Text PDF

Phthalates are chemicals ubiquitously used in industry. Individual phthalates have been found to adversely affect female reproduction; however, humans are exposed to a mixture of phthalates daily, primarily through ingestion. Previous studies show that exposure to an environmentally relevant mixture of phthalates (Mix) can affect female reproduction.

View Article and Find Full Text PDF

Di(2-ethylhexyl) phthalate and diisononyl phthalate are widely used as plasticizers in polyvinyl chloride products. Short-term exposures to phthalates affect hormone levels, ovarian follicle populations, and ovarian gene expression. However, limited data exist regarding the effects of long-term exposure to phthalates on reproductive functions.

View Article and Find Full Text PDF

In humans and mice, loss-of-function mutations in growth hormone-releasing hormone receptor (GHRHR) cause isolated GH deficiency. The mutant GHRHR mouse model, GhrhrLit/Lit (LIT), exhibits loss of serum GH, but also fewer somatotropes. However, how loss of GHRH signaling affects expansion of stem and progenitor cells giving rise to GH-producing cells is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • PCBs were used industrially until their ban in the 1970s, but they remain in the environment, prompting research on their long-term effects on rat ovaries.
  • This study examined how prenatal and postnatal exposure to PCBs influenced follicle counts and gene expression related to reproductive hormones in the ovaries of the offspring rats.
  • Findings indicated that prenatal PCB exposure reduced follicle numbers and affected the proliferation marker Ki67, but did not significantly alter expression of some hormone receptors or estradiol levels.
View Article and Find Full Text PDF

Polychlorinated-biphenyls (PCBs) are industrial compounds, which were widely used in manufacturing of electrical parts and transformers. Despite being banned in 1979 due to human health concerns, they persist in the environment. In humans and experimental model systems, PCBs elicit toxicity in part by acting as endocrine-disrupting chemicals (EDCs).

View Article and Find Full Text PDF

Gonadotropin hormone release from the anterior pituitary is critical to regulating reproductive endocrine function. Clinical evidence has documented that people with epilepsy display altered levels of gonadotropin hormones, both acutely following seizures and chronically. Despite this relationship, pituitary function remains a largely understudied avenue in preclinical epilepsy research.

View Article and Find Full Text PDF

Clinical evidence indicates that patients with temporal lobe epilepsy (TLE) often show differential outcomes of comorbid conditions in relation to the lateralization of the seizure focus. A particularly strong relationship exists between the side of seizure focus and the propensity for distinct reproductive endocrine comorbidities in women with TLE. Therefore, here we evaluated whether targeting of left or right dorsal hippocampus for intrahippocampal kainic acid (IHKA) injection, a model of TLE, produces different outcomes in hippocampal granule cell dispersion, body weight gain, and multiple measures of reproductive endocrine dysfunction in female mice.

View Article and Find Full Text PDF

The hypothalamic-pituitary-gonadal (HPG) axis is the principal modulator of reproductive function. Proper control of this system relies on several hormonal pathways, which make the female reproductive components susceptible to disruption by endocrine-disrupting chemicals such as tributyltin (TBT). Here, we review the relevant research on the associations between TBT exposure and dysfunction of the female HPG axis components.

View Article and Find Full Text PDF

Iodoacetic acid (IAA) is a water disinfection byproduct (DBP) formed by reactions between oxidizing disinfectants and iodide. In vitro studies have indicated that IAA is one of the most cyto- and genotoxic DBPs. In humans, DBPs have been epidemiologically associated with reproductive dysfunction.

View Article and Find Full Text PDF

Genistein is an isoflavone abundant in soybean and infants are exposed to high levels of genistein in soy-based formula. It is known that genistein mediates estrogen receptor (ER) signaling, and exposure during neonatal development could cause acute and long term endocrine effects. We assayed genistein's impact on the neonatal mouse pituitary gland because it is an endocrine signaling hub and is sensitive to endocrine disruption during critical periods.

View Article and Find Full Text PDF

The progenitor cells of the developing liver can differentiate toward both hepatocyte and biliary cell fates. In addition to the established roles of TGFβ and Notch signaling in this fate specification process, there is increasing evidence that liver progenitors are sensitive to mechanical cues. Here, we utilized microarrayed patterns to provide a controlled biochemical and biomechanical microenvironment for mouse liver progenitor cell differentiation.

View Article and Find Full Text PDF

The hypothalamic anteroventral periventricular nucleus (AVPV) is the major regulator of reproductive function within the hypothalamic-pituitary-gonadal (HPG) axis. Despite an understanding of the function of neuronal subtypes within the AVPV, little is known about the molecular mechanisms regulating their development. Previous work from our laboratory has demonstrated that Notch signaling is required in progenitor cell maintenance and formation of kisspeptin neurons of the arcuate nucleus (ARC) while simultaneously restraining POMC neuron number.

View Article and Find Full Text PDF

The coordination of pituitary development is complicated and requires input from multiple cellular processes. Recent research has provided insight into key molecular determinants that govern cell fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and functionally describe the presumptive pituitary stem cell population has allowed for a better understanding of the processes that govern endocrine cell differentiation in the developing pituitary.

View Article and Find Full Text PDF

Adolescents and females experience worse outcomes of drug use compared to adults and males. This could result from age- and sex-specific consequences of drug exposure on brain function and cognitive behavior. In the current study, we examined whether a history of intravenous methamphetamine (METH) self-administration impacted cognitive flexibility and 5-HTR localization in the orbitofrontal cortex (OFC) in an age- and sex-dependent manner.

View Article and Find Full Text PDF

Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes ().

View Article and Find Full Text PDF

Critical windows of development are often more sensitive to endocrine disruption. The murine pituitary gland has two critical windows of development: embryonic gland establishment and neonatal hormone cell expansion. During embryonic development, one environmentally ubiquitous endocrine-disrupting chemical, bisphenol A (BPA), has been shown to alter pituitary development by increasing proliferation and gonadotrope number in females but not males.

View Article and Find Full Text PDF

The hypothalamus-pituitary-gonadal (HPG) axis is the most critical modulator of reproductive function. Genetic or environmental insults to the HPG axis during developmental windows can persist into adulthood, and processes such as gonadal hormone synthesis, timing of puberty, and fertility can be affected. At the level of the hypothalamus, multiple regions develop at different times and are under the control of a concert of signaling pathways and transcription factors required for their patterning and maturation.

View Article and Find Full Text PDF

The plant flavonoid isoliquiritigenin (ISL) is a botanical estrogen widely taken as an herbal supplement to ease the symptoms of menopause. ISL has been also shown to have anti-tumor properties in a number of cancer cell backgrounds. However, the effects of ISL on normal cells are less well known and virtually unstudied in the context of the pituitary gland.

View Article and Find Full Text PDF

Background: Pituitary stem/progenitor cells give rise to all of the endocrine cell types within the pituitary gland and are necessary for both development and gland homeostasis. Recent studies have identified several key factors that characterize the progenitor cell population. However, little is known about the factors that regulate progenitor cell differentiation and maintenance.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals are prevalent in the environment and can impair reproductive success by affecting the hypothalamic-pituitary-gonadal axis. The developing pituitary gland is sensitive to exposure to endocrine-disrupting chemicals, such as bisphenol A (BPA), and sex-specific effects can occur. However, effects on the critical window of neonatal pituitary gland development in mice have not been explored.

View Article and Find Full Text PDF

The mammalian arcuate nucleus (ARC) houses neurons critical for energy homeostasis and sexual maturation. Proopiomelanocortin (POMC) and Neuropeptide Y (NPY) neurons function to balance energy intake and Kisspeptin neurons are critical for the onset of puberty and reproductive function. While the physiological roles of these neurons have been well established, their development remains unclear.

View Article and Find Full Text PDF

Background: As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch.

View Article and Find Full Text PDF