Publications by authors named "Lori M Millner"

Introduction: The N-acetylation polymorphism has been the subject of comprehensive reviews describing the role of arylamine N-acetyltransferase 2 (NAT2) in the metabolism of numerous aromatic amine and hydrazine drugs.

Areas Covered: We describe and review data that more clearly defines the effects of haplotypes and genotypes on the expression of acetylator phenotype towards selected drugs within human hepatocytes in vitro, within human hepatocyte cultures in situ, and clinical measures such as bioavailability, plasma metabolic ratios of parent to N-acetyl metabolite, elimination rate constants and plasma half-life, and/or clearance determinations in human subjects. We review several drugs (isoniazid, hydralazine, sulfamethazine, amifampridine, procainamide, sulfasalazine, amonafide and metamizole) for which phenotype-guided therapy may be important.

View Article and Find Full Text PDF

Precision medicine in oncology focuses on identifying which therapies are most effective for each patient based on genetic characterization of the cancer. Traditional chemotherapy is cytotoxic and destroys all cells that are rapidly dividing. The foundation of precision medicine is targeted therapies and selecting patients who will benefit most from these therapies.

View Article and Find Full Text PDF

There is a profound need in oncology to detect cancer earlier, guide individualized therapies, and better monitor progress during treatment. Currently, some of this information can be achieved through solid tissue biopsy and imaging. However, these techniques are limited because of the invasiveness of the procedure and the size of the tumor.

View Article and Find Full Text PDF

The measurement and characterization of circulating tumor cells (CTCs) hold promise for advancing personalized therapeutics. CTCs are the precursor to metastatic cancer and thus have the potential to radically alter patient treatment and outcome. Currently, clinical information provided by the enumeration of CTCs is limited to predicting clinical outcome.

View Article and Find Full Text PDF

N-acetyltransferase 1 (NAT1) catalyzes N-acetylation of arylamines as well as the O-acetylation of N-hydroxylated arylamines. O-acetylation leads to the formation of electrophilic intermediates that result in DNA adducts and mutations. NAT1*10 is the most common variant haplotype and is associated with increased risk for numerous cancers.

View Article and Find Full Text PDF

Human arylamine N-acetyltransferase 1 (NAT1) is a phase II cytosolic enzyme responsible for the activation or deactivation of many arylamine compounds including pharmaceuticals and environmental carcinogens. NAT1 is highly polymorphic and has been associated with altered risk toward many cancers. NAT1*14B is characterized by a single nucleotide polymorphism in the coding region (rs4986782; 560G>A; R187Q).

View Article and Find Full Text PDF

N-acetyltransferase 1 (NAT1) is a phase II metabolic enzyme responsible for the biotransformation of aromatic and heterocyclic amine carcinogens such as 4-aminobiphenyl (ABP). NAT1 catalyzes N-acetylation of arylamines as well as the O-acetylation of N-hydroxylated arylamines. O-acetylation leads to the formation of electrophilic intermediates that result in DNA adducts and mutations.

View Article and Find Full Text PDF

Aromatic amines such as 4-aminobiphenyl (ABP) require biotransformation to exert their carcinogenic effects. Genetic polymorphisms in biotransformation enzymes such as N-acetyltransferase 2 (NAT2) may modify cancer risk following exposure. Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator), NAT2*5B (common Caucasian slow acetylator), or NAT2*7B (common Asian slow acetylator) alleles (haplotypes) were treated with ABP to test the effect of NAT2 polymorphisms on DNA adduct formation and mutagenesis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: