Topoisomerase inhibitors are potent DNA damaging agents which are widely used in oncology, and they demonstrate robust synergistic tumor cell killing in combination with DNA repair inhibitors, including poly(ADP)-ribose polymerase (PARP) inhibitors. However, their use has been severely limited by the inability to achieve a favorable therapeutic index due to severe systemic toxicities. Antibody-drug conjugates address this issue via antigen-dependent targeting and delivery of their payloads, but this approach requires specific antigens and yet still suffers from off-target toxicities.
View Article and Find Full Text PDFThe receptor tyrosine kinase KIT is an established oncogenic driver of tumor growth in certain tumor types, including gastrointestinal stromal tumors, in which constitutively active mutant forms of KIT represent an actionable target for small-molecule tyrosine kinase inhibitors. There is also considerable potential for KIT to influence tumor growth indirectly based on its expression and function in cell types of the innate immune system, most notably mast cells. We have evaluated syngeneic mouse tumor models for antitumor effects of an inhibitory KIT mAb, dosed either alone or in combination with immune checkpoint inhibitors.
View Article and Find Full Text PDFKTN0158 is a novel anti-KIT antibody that potently inhibits wild-type and mutant KIT. This study evaluated the safety, biologic activity, and pharmacokinetic/pharmacodynamics profile of KTN0158 in dogs with spontaneous mast cell tumors (MCT) as a prelude to human clinical applications. Cell proliferation, KIT phosphorylation, and mast cell degranulation were evaluated KTN0158 was administered to 4 research dogs to assess clinical effects and cutaneous mast cell numbers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2016
Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes in diabetes, oncology, and neurology. N-(3-(1H-1,2,4-triazol-1-yl)propyl)-5-(3-chloro-4-methoxyphenyl)oxazole-4-carboxamide (PF-04802367 or PF-367) has been identified as a highly potent inhibitor, which is among the most selective antagonists of GSK-3 to date. Its efficacy was demonstrated in modulation of tau phosphorylation in vitro and in vivo.
View Article and Find Full Text PDFExplorations in the pyrimidinetrione series of MMP-13 inhibitors led to the discovery of a series of spiro-fused compounds that are potent and selective inhibitors of MMP-13. While other spiro-fused motifs are hydrolytically unstable, presumably due to electronic destabilization of the pyrimidinetrione ring, the spiropyrrolidine series does not share this liability. Greater than 100-fold selectivity versus other MMP family members was achieved by incorporation of an extended aryl-heteroaryl P1'group.
View Article and Find Full Text PDFUsing SAR from two related series of pyrimidinetrione-based inhibitors, compounds with potent MMP-13 inhibition and >100-fold selectivity against other MMPs have been identified. Despite high molecular weights, clogPs, and polar surface areas, the compounds are generally well absorbed and have excellent pharmacokinetic (PK) properties when dosed as sodium salts. In a rat fibrosis model, a compound from the series displayed no fibrosis at exposures many fold greater than its MMP-13 IC50.
View Article and Find Full Text PDFA series of 3-hydroxy-3-methylpipecolic hydroxamate inhibitors of MMP-13 and aggrecanase was designed based on the observation of increased aggrecanase activity with substitution at the 3-position of the piperidine ring. Potency versus aggrecanase was optimized by modification of the benzyloxyarylsulfonamide group that binds in the S1' pocket. These compounds also possess markedly improved bioavailability and lower metabolic clearance compared to analogous 3,3-dimethyl-5-hydroxypipecolic hydroxamates.
View Article and Find Full Text PDFA series of pipecolic hydroxamate inhibitors of MMP-13 and aggrecanase was discovered based on screening known inhibitors of TNF-alpha converting enzyme (TACE). Potency versus aggrecanase was optimized by modification of the benzyloxyarylsulfonamide group. Incorporation of geminal alkyl substitution at the 3-position of the piperidine ring improved metabolic stability, presumably by increasing steric hindrance around the metabolically labile hydroxamic acid.
View Article and Find Full Text PDFThrough the use of computational modeling, a series of pyrimidinetrione-based inhibitors of MMP-13 was designed based on a lead inhibitor identified through file screening. Incorporation of a biaryl ether moiety at the C-5 position of the pyrimidinetrione ring resulted in a dramatic enhancement of MMP-13 potency. Protein crystallography revealed that this moiety binds in the S(1)(') pocket of the enzyme.
View Article and Find Full Text PDFN-Hydroxy-3-hydroxy-4-arylsulfonyltetrahydropyranyl-3-carboxamides were designed as novel inhibitors of MMP-13 and aggrecanase based on known endocyclic hydroxamate inhibitors of matrix metalloproteinases. These compounds offer favorable physicochemical properties and low metabolic clearance. Synthesis and structure-activity relationships are reported.
View Article and Find Full Text PDFThe SAR of a series of sterically hindered sulfonamide hydroxamic acids with relatively large P1' groups is described. The compounds typically spare MMP-1 while being potent inhibitors of MMP-13. The metabolically more stable compounds in the series contain either a monocyclic or bicyclic pyran ring adjacent to the hydroxamate group.
View Article and Find Full Text PDFA series of novel MMP-13 and TNF-alpha converting enzyme inhibitors based on piperazine 2-hydroxamic acid scaffolds are described. The TACE, MMP-1 and MMP-13 activity of these inhibitors as well as the effect of substitution of the piperazine nitrogen and the P-1' benzyloxy tailpiece is discussed. Moderate in vivo activity is observed with several members of this group.
View Article and Find Full Text PDFPhosphinic acid-based inhibitors of MMP-13 have been investigated with the aim of identifying potent inhibitors with high selectivity versus MMP-1. Independent variation of the substituents on a P(1)' phenethyl group and a P(2) benzyl group improved potencies in both cases around 3-fold over the unsubstituted parent. Combining improved P(1)' and P(2) groups into a single molecule gave an inhibitor with a 4.
View Article and Find Full Text PDFA series of novel, selective TNF-alpha converting enzyme inhibitors based on 4-hydroxy and 5-hydroxy pipecolate hydroxamic acid scaffolds is described. The potency and selectivity of TACE inhibition is dramatically influenced by the nature of the sulfonamide group which interacts with the S1' site of the enzyme. Substituted 4-benzyloxybenzenesulfonamides exhibit excellent TACE potency with >100x selectivity over inhibition of matrix metalloprotease-1 (MMP-1).
View Article and Find Full Text PDFBackground: Broad inhibition of matrix metalloproteinases (MMPs) attenuates left ventricular remodeling after myocardial infarction (MI). However, it is not clear if selective MMP inhibition strategies will be effective or if MMP inhibition will impair angiogenesis after MI.
Methods And Results: We used a selective MMP inhibitor (MMPi) that does not inhibit MMP-1 in rabbits, which, like humans but unlike rodents, express MMP-1 as a major collagenase.