Sleep plays a critical role in stroke recovery. However, there are limited practices to measure sleep for individuals with stroke, thus inhibiting our ability to identify and treat poor sleep quality. Wireless, body-worn sensors offer a solution for continuous sleep monitoring.
View Article and Find Full Text PDFPolysomnography (PSG) is the current gold standard in high-resolution sleep monitoring; however, this method is obtrusive, expensive, and time-consuming. Conversely, commercially available wrist monitors such as ActiWatch can monitor sleep for multiple days and at low cost, but often overestimate sleep and cannot differentiate between sleep stages, such as rapid eye movement (REM) and non-REM. Wireless wearable sensors are a promising alternative for their portability and access to high-resolution data for customizable analytics.
View Article and Find Full Text PDFCircadian rhythms in physiology and behavior exist in all living organisms, from cells to humans. The most evident rhythms are the recurrent cycles of sleep and wake as well as changes in alertness and cognitive performance across the 24h. Clearly, sleep pressure can exert a strong influence on cognitive performance, but the influence of circadian modulation of alertness and cognitive function is evident even when the pressure for sleep is high.
View Article and Find Full Text PDF