Introduction: The effects of sex and apolipoprotein E (APOE)-Alzheimer's disease (AD) risk factors-on white matter microstructure are not well characterized.
Methods: Diffusion magnetic resonance imaging data from nine well-established longitudinal cohorts of aging were free water (FW)-corrected and harmonized. This dataset included 4741 participants (age = 73.
Proc SPIE Int Soc Opt Eng
February 2024
Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction.
View Article and Find Full Text PDFSubject head motion during the acquisition of diffusion-weighted imaging (DWI) of the brain induces artifacts and affects image quality. Information about the frequency and extent of motion could reveal which aspects of motion correction are most necessary. Therefore, we investigate the extent of translation and rotation among participants, and how the motion changes during the scan acquisition.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Diffusion MRI (dMRI) streamline tractography, the gold-standard for in vivo estimation of white matter (WM) pathways in the brain, has long been considered as a product of WM microstructure. However, recent advances in tractography demonstrated that convolutional recurrent neural networks (CoRNN) trained with a teacher-student framework have the ability to learn to propagate streamlines directly from T1 and anatomical context. Training for this network has previously relied on high resolution dMRI.
View Article and Find Full Text PDFIntroduction: The effects of sex, race, and Apolipoprotein E () - Alzheimer's disease (AD) risk factors - on white matter integrity are not well characterized.
Methods: Diffusion MRI data from nine well-established longitudinal cohorts of aging were free-water (FW)-corrected and harmonized. This dataset included 4,702 participants (age=73.
J Med Imaging (Bellingham)
March 2024
Purpose: Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides unique information about white matter microstructure in the brain but is susceptible to confounding effects introduced by scanner or acquisition differences. ComBat is a leading approach for addressing these site biases. However, despite its frequent use for harmonization, ComBat's robustness toward site dissimilarities and overall cohort size have not yet been evaluated in terms of DTI.
View Article and Find Full Text PDFData harmonization is necessary for removing confounding effects in multi-site diffusion image analysis. One such harmonization method, LinearRISH, scales rotationally invariant spherical harmonic (RISH) features from one site ("target") to the second ("reference") to reduce confounding scanner effects. However, reference and target site designations are not arbitrary and resultant diffusion metrics (fractional anisotropy, mean diffusivity) are biased by this choice.
View Article and Find Full Text PDFT1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms.
View Article and Find Full Text PDFT1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms.
View Article and Find Full Text PDFImaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction.
View Article and Find Full Text PDFObjective: Data harmonization is necessary for removing confounding effects in multi-site diffusion image analysis. One such harmonization method, LinearRISH, scales rotationally invariant spherical harmonic (RISH) features from one site ("target") to the second ("reference") to reduce confounding scanner effects. However, reference and target site designations are not arbitrary and resultant diffusion metrics (fractional anisotropy, mean diffusivity) are biased by this choice.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2023
The effects of normal aging on functional connectivity (FC) within various brain networks of gray matter (GM) have been well-documented. However, the age effects on the networks of FC between white matter (WM) and GM, namely WM-GM FC, remains unclear. Evaluating crucial properties, such as global efficiency (GE), for a WM-GM FC network poses a challenge due to the absence of closed triangle paths which are essential for assessing network properties in traditional graph models.
View Article and Find Full Text PDFBatch size is a key hyperparameter in training deep learning models. Conventional wisdom suggests larger batches produce improved model performance. Here we present evidence to the contrary, particularly when using autoencoders to derive meaningful latent spaces from data with spatially global similarities and local differences, such as electronic health records (EHR) and medical imaging.
View Article and Find Full Text PDFIntroduction: It is unclear how rates of white matter microstructural decline differ between normal aging and abnormal aging.
Methods: Diffusion MRI data from several well-established longitudinal cohorts of aging [Alzheimer's Neuroimaging Initiative (ADNI), Baltimore Longitudinal Study of Aging (BLSA), Vanderbilt Memory & Aging Project (VMAP)] was free-water corrected and harmonized. This dataset included 1,723 participants (age at baseline: 72.
Introduction: White matter microstructure may be abnormal along the Alzheimer's disease (AD) continuum.
Methods: Diffusion magnetic resonance imaging (dMRI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, = 627), Baltimore Longitudinal Study of Aging (BLSA, = 684), and Vanderbilt Memory & Aging Project (VMAP, = 296) cohorts were free-water (FW) corrected and conventional, and FW-corrected microstructural metrics were quantified within 48 white matter tracts. Microstructural values were subsequently harmonized using the technique and inputted as independent variables to predict diagnosis (cognitively unimpaired [CU], mild cognitive impairment [MCI], AD).
Objective: We examined medical records to determine health conditions associated with dementia at varied intervals prior to dementia diagnosis in participants from the Baltimore Longitudinal Study of Aging (BLSA).
Methods: Data were available for 347 Alzheimer's disease (AD), 76 vascular dementia (VaD), and 811 control participants without dementia. Logistic regressions were performed associating International Classification of Diseases, 9th Revision (ICD-9) health codes with dementia status across all time points, at 5 and 1 year(s) prior to dementia diagnosis, and at the year of diagnosis, controlling for age, sex, and follow-up length of the medical record.
Characterizing relationships between gray matter (GM) and white matter (WM) in early Alzheimer's disease (AD) would improve understanding of how and when AD impacts the brain. However, modeling these relationships across brain regions and longitudinally remains a challenge. Thus, we propose extending joint independent component analysis (jICA) into spatiotemporal modeling of regional cortical thickness and WM bundle volumes leveraging multimodal MRI.
View Article and Find Full Text PDFDiffusion weighted MRI (DW-MRI) harmonization is necessary for multi-site or multi-acquisition studies. Current statistical methods address the need to harmonize from one site to another, but do not simultaneously consider the use of multiple datasets which are comprised of multiple sites, acquisitions protocols, and age demographics. This work explores deep learning methods which can generalize across these variations through semi-supervised and unsupervised learning while also learning to estimate multi-shell data from single-shell data using the Multi-shell Diffusion MRI Harmonization Challenge (MUSHAC) and Baltimore Longitudinal Study on Aging (BLSA) datasets.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
April 2022
Changes in brain structure and connectivity in aging can be probed through diffusion weighted MRI and summarized with structural connectome matrices. Complex network analysis based on graph theory has been applied to provide measures that are correlated with neurobiological variations and can help guide quantitative study of brain function. However, the understanding of how connectomes change longitudinally is limited.
View Article and Find Full Text PDFCommunity detection on graphs constructed from functional magnetic resonance imaging (fMRI) data has led to important insights into brain functional organization. Large studies of brain community structure often include images acquired on multiple scanners across different studies. Differences in scanner can introduce variability into the downstream results, and these differences are often referred to as scanner effects.
View Article and Find Full Text PDFAlong with the increasing availability of electronic medical record (EMR) data, phenome-wide association studies (PheWAS) and phenome-disease association studies (PheDAS) have become a prominent, first-line method of analysis for uncovering the secrets of EMR. Despite this recent growth, there is a lack of approachable software tools for conducting these analyses on large-scale EMR cohorts. In this article, we introduce pyPheWAS, an open-source python package for conducting PheDAS and related analyses.
View Article and Find Full Text PDFReproducible identification of white matter pathways across subjects is essential for the study of structural connectivity of the human brain. One of the key challenges is anatomical differences between subjects and human rater subjectivity in labeling. Labeling white matter regions of interest presents many challenges due to the need to integrate both local and global information.
View Article and Find Full Text PDF