Background: Loxapine inhalation powder delivered by a hand-held device as a thermally generated aerosol (ADASUVE) was recently approved in the United States and European Union for use in the acute treatment of agitation in patients with bipolar disorder or schizophrenia. As smokers comprise a large subpopulation of these patients, and many antipsychotic drugs require dose adjustments for smokers, the objective of this study was to compare the pharmacokinetics of inhaled loxapine administered to smokers and nonsmokers.
Methods: Pharmacokinetics and sedation pharmacodynamics using a visual analog scale were studied in 35 male and female adult subjects (18 nonsmokers and 17 smokers) following a single dose of 10 mg of inhaled loxapine.
The antipsychotic drugs risperidone, paliperidone, olanzapine, quetiapine, aripiprazole, clozapine, haloperidol, and chlorpromazine have been reported to have various degrees of interaction (substrate or inhibitor) with the multidrug resistance transporter, P-glycoprotein (P-gp). An interaction of the antipsychotic drug loxapine with P-gp was recently reported, but an IC50 value was not determined. Loxapine (as the succinate salt) was evaluated as a P-gp substrate, and inhibitor of P-gp mediated transport of digoxin in vitro in Caco-2 cells.
View Article and Find Full Text PDFA highly pure aerosol of the antipsychotic drug, loxapine, can be thermally generated through vaporization from a thin coating of loxapine on a stainless steel substrate with the formation of a condensation aerosol. Because loxapine can exist in two polymorphic forms, the morphological time course from loxapine drug substance to coating on the substrate (intermediate product) and ultimately to the aerosol was investigated using differential scanning calorimetery, X-ray diffraction (XRD), Fourier transform infrared, and Raman spectroscopy. Monoclinic and orthorhombic crystalline forms of loxapine were confirmed by single crystal and powder XRD.
View Article and Find Full Text PDFJ Pharm Biomed Anal
November 2010
Fentanyl, N-(1-phenethylpiperidin-4-yl)-N-phenylpropionamide is a rapid-acting, powerful opioid analgesic used extensively for anesthesia and chronic pain management. A forced degradation study of fentanyl active pharmaceutical ingredient (API) was performed using light, acid, base, heat and oxidation. Under acidic conditions, fentanyl was shown to degrade to N-phenyl-1-(2-phenylethyl)-piperidin-4-amine (PPA(1)).
View Article and Find Full Text PDFBidirectional transport studies were conducted to determine whether substrates of five intestinal transporters showed carrier-mediated asymmetric transport across MDCK (Madin-Darby canine kidney) cell monolayers grown under standard conditions. Drug concentrations were quantitated using liquid scintillation counting, liquid chromatography/mass spectrometry/mass spectrometry, or liquid chromatography/mass spectrometry. In the presence of a pH gradient, benzoic acid exhibited net apical-to-basolateral transport, with apparent permeability ratios (apical-to-basolateral permeability/basolateral-to-apical permeability) ranging from 14 to 25.
View Article and Find Full Text PDFRecent studies in our laboratory have shown that the loop diuretic, furosemide, is actively secreted by Caco-2 cells and rat jejunal tissue. This active secretion could be the result of efflux transporters such as P-gp, MRP1 or MRP2 (cMOAT). To determine if any of these transporters is responsible for the secretion of furosemide, we compared directional permeability in the wild-type cell lines, MDCK strains I and II, and LLC-PK1, vs.
View Article and Find Full Text PDF