Publications by authors named "Lori Boston"

Article Synopsis
  • Long-read genome sequencing (lrGS) offers more accurate and comprehensive variant detection for rare diseases compared to short-read genome sequencing (srGS), though its exact impact on diagnostic yield remains unclear.
  • In a study involving 96 individuals suspected of having genetic rare diseases, lrGS identified new or potentially relevant genetic variants in 16.7% of participants, with 9.4% possessing pathogenic or likely pathogenic variants.
  • While lrGS provided additional insights beyond what was captured by srGS, particularly with structural variations, the study suggests that growing lrGS datasets will further enhance diagnostic capabilities in the future.
View Article and Find Full Text PDF
Article Synopsis
  • Zygnematophyceae, a group of filamentous algae, are closely related to land plants, and this study sequenced four of their genomes, creating detailed chromosome-scale assemblies for three strains of Zygnema circumcarinatum.
  • The research identified key traits in their common ancestor with land plants that may have enabled plants to adapt to life on land, including expanded genes for signaling, environmental responses, and multicellular growth.
  • Additionally, the study revealed shared enzymes for cell wall synthesis between Zygnematophyceae and land plants, suggesting a genetic framework that integrates environmental responses with developmental growth over 600 million years of evolution.
View Article and Find Full Text PDF
Article Synopsis
  • Long-read genome sequencing (lrGS) outperforms short-read genome sequencing (srGS) in detecting genetic variants associated with rare diseases.
  • In a study of 96 probands who tested negative with srGS, lrGS identified new disease-relevant variants in 16.7% of cases, with 8.33% containing pathogenic or likely pathogenic variants.
  • lrGS revealed unique variants not detectable by srGS, highlighting that while reanalyzing previous data can improve diagnostic yield, lrGS provides significant additional insights into rare genetic conditions.
View Article and Find Full Text PDF

The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of and one strain of ) and generated chromosome-scale assemblies for all strains of the emerging model system .

View Article and Find Full Text PDF

We assembled the 9.8-Gbp genome of western redcedar (WRC; ), an ecologically and economically important conifer species of the Cupressaceae. The genome assembly, derived from a uniquely inbred tree produced through five generations of self-fertilization (selfing), was determined to be 86% complete by BUSCO analysis, one of the most complete genome assemblies for a conifer.

View Article and Find Full Text PDF

Genome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence-absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the 'Pawnee' cultivar.

View Article and Find Full Text PDF

Exome and genome sequencing have proven to be effective tools for the diagnosis of neurodevelopmental disorders (NDDs), but large fractions of NDDs cannot be attributed to currently detectable genetic variation. This is likely, at least in part, a result of the fact that many genetic variants are difficult or impossible to detect through typical short-read sequencing approaches. Here, we describe a genomic analysis using Pacific Biosciences circular consensus sequencing (CCS) reads, which are both long (>10 kb) and accurate (>99% bp accuracy).

View Article and Find Full Text PDF

Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare).

View Article and Find Full Text PDF
Article Synopsis
  • Genetic diversity is crucial for improving crops, but a single reference genome can't fully represent this diversity, leading to the concept of a 'pan-genome.'
  • The study focused on barley, an essential cereal crop, and created chromosome-scale sequences for 20 diverse barley genotypes, including landraces, cultivars, and wild types.
  • The research identified significant genetic variations, including large inversions, and established a first-generation barley pan-genome to facilitate genetic research and breeding efforts.
View Article and Find Full Text PDF

Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages.

View Article and Find Full Text PDF

Pituitary gonadotropins LH and FSH play central roles in reproductive function. In Old World primates, LH stimulates ovulation in females and testosterone production in males. Recent studies have found that squirrel monkeys and other New World primates lack expression of LH in the pituitary.

View Article and Find Full Text PDF