Genomic imprinting is an epigenetic state that results from differential processing of chromosomes during gametogenesis and which can cause differential expression of genes depending on the sex of the parent transmitting that gene. In Drosophila, many examples of imprinted marker genes have been documented and imprinting of these genes involves highly conserved epigenetic regulators. However, no endogenously imprinted genes have yet been identified.
View Article and Find Full Text PDFAntisense transcription is prevalent in mammalian genomes, yet the function of many antisense transcripts remains elusive. We have previously shown that the fibroblast growth factor 2 (FGF2) gene is regulated endogenously by an overlapping antisense gene called Nudix-type motif 6 (NUDT6). However, the molecular mechanisms that determine the balance of FGF2 and NUDT6 transcripts are not yet well understood.
View Article and Find Full Text PDFCancers are initiated as a result of changes that occur in the genome. Identification of gains and losses in the structure and expression of tumor-suppressor genes and oncogenes lies at the root of the understanding of cancer cell biology. Here, we show that the mitogen-activated protein kinase (MAPK) MKK3 suppresses the growth of breast cancer, in which it varies in copy number.
View Article and Find Full Text PDFParamutation is an epigenetic process in which a combination of alleles in a heterozygous organism results in a meiotically stable change in expression of one of the alleles. The mechanisms underlying paramutation are being actively investigated, and examples have been described in both plants and mammals, suggesting that it may utilize epigenetic mechanisms that are widespread and evolutionarily conserved. Paramutation at the well-studied maize b1 locus requires a control region consisting of seven 853 bp tandem repeats.
View Article and Find Full Text PDFGenet Res Int
August 2012
Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model.
View Article and Find Full Text PDFCASP and GRASP are small cytoplasmic adaptor proteins that share highly similar protein structures as well as an association with the cytohesin/ARNO family of guanine nucleotide exchange factors within the immune and nervous systems respectively. Each contains an N-terminal PDZ domain, a central coiled-coil motif, and a carboxy-terminal PDZ-binding motif (PDZbm). We set out to further characterize the relationship between CASP and GRASP by comparing both their gene structures and their functional motifs across several vertebrate organisms.
View Article and Find Full Text PDFHermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key components of 1 of 4 different protein complexes (AP-3 or BLOC-1, -2, and -3) that are key participants in the process. Drosophila melanogaster has been a key model organism in demonstrating the in vivo significance of many genes involved in protein trafficking pathways; for example, mutations in the "granule group" genes lead to changes in eye colour arising from improper protein trafficking to pigment granules in the developing eye.
View Article and Find Full Text PDF