Publications by authors named "Lori A Hazlehurst"

Multiple myeloma is the second most hematological cancer. RUVBL1 and RUVBL2 form a subcomplex of many chromatin remodeling complexes implicated in cancer progression. As an inhibitor specific to the RUVBL1/2 complex, CB-6644 exhibits remarkable anti-tumor activity in xenograft models of Burkitt's lymphoma and multiple myeloma (MM).

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (BM MSCs) play a tumor-supportive role in promoting drug resistance and disease relapse in multiple myeloma (MM). Recent studies have discovered a sub-population of MSCs, known as inflammatory MSCs (iMSCs), exclusive to the MM BM microenvironment and implicated in drug resistance. Through a sophisticated analysis of public expression data from unexpanded BM MSCs, we uncovered a positive association between iMSC signature expression and minimal residual disease.

View Article and Find Full Text PDF

MitoNEET belongs to the CDGSH Iron-Sulfur Domain (CISD)-gene family of proteins and is a [2Fe-2S] cluster-containing protein found on the outer membrane of mitochondria. The specific functions of mitoNEET/CISD1 remain to be fully elucidated, but the protein is involved in regulating mitochondrial bioenergetics in several metabolic diseases. Unfortunately, drug discovery efforts targeting mitoNEET to improve metabolic disorders are hampered by the lack of ligand-binding assays for this mitochondrial protein.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) occur when chromatin is decondensed and extruded from the cell, generating a web-like structure. NETs have been implicated in the pathogenesis of several sterile disease states and thus are a potential therapeutic target. Various pathways have been shown to induce NETs, including autophagy, with several key enzymes being activated like peptidyl arginine deiminase 4 (PAD4), an enzyme responsible for citrullination of histones, allowing for DNA unwinding and subsequent release from the cell.

View Article and Find Full Text PDF

The flavin adenine dinucleotide containing Endoplasmic Reticulum Oxidoreductase-1 α (ERO1α) catalyzes the formation of disulfide bond formation of secretory and transmembrane proteins and contributes towards proper protein folding. Recently, increased ERO1α expression has been shown to contribute to increased tumor growth and metastasis in multiple cancer types. In this report we sought to define novel chemical space for targeting ERO1α function.

View Article and Find Full Text PDF

MTI-101 is a first-in-class cyclic peptide that kills cells via calcium overload in a caspase-independent manner. Understanding biomarkers of response is critical for positioning a novel therapeutic toward clinical development. Isogenic MTI-101-acquired drug-resistant lung cancer cell line systems (PC-9 and H446) coupled with differential RNA-SEQ analysis indicated that downregulated genes were enriched in the hallmark gene set for epithelial-to-mesenchymal transition (EMT) in both MTI-101-acquired resistant cell lines.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a hematological cancer with inevitable drug resistance. MM cells interacting with bone marrow stromal cells (BMSCs) undergo substantial changes in the transcriptome and develop de novo multi-drug resistance. As a critical component in transcriptional regulation, how the chromatin landscape is transformed in MM cells exposed to BMSCs and contributes to the transcriptional response to BMSCs remains elusive.

View Article and Find Full Text PDF

Calcium is essential for cells to perform numerous physiological processes. In cancer, the augmentation of calcium signaling supports the more proliferative and migratory cells, which is a characteristic of the epithelial-to-mesenchymal transition (EMT). By genetically and epigenetically modifying genes, channels, and entire signaling pathways, cancer cells have adapted to survive with an extreme imbalance of calcium that allows them to grow and metastasize in an abnormal manner.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a currently incurable hematologic cancer. Patients that initially respond to therapeutic intervention eventually relapse with drug resistant disease. Thus, novel treatment strategies are critically needed to improve patient outcomes.

View Article and Find Full Text PDF

HYD1 is an all D-amino acid linear 10-mer peptide that was discovered by one-bead-one-compound screening. HYD1 has five hydrophobic amino acids flanked by polar amino acids. Alanine scanning studies showed that alternating hydrophobic amino acid residues and N- and C-terminal lysine side chains were contributors to the biological activity of the linear 10-mer analogs.

View Article and Find Full Text PDF

Endoplasmic reticulum oxidoreductin-1 alpha (ERO1α) was originally shown to be an endoplasmic reticulum (ER) resident protein undergoing oxidative cycles in concert with protein disulfide isomerase (PDI) to promote proper protein folding and to maintain homeostasis within the ER. ERO1α belongs to the flavoprotein family containing a flavin adenine dinucleotide utilized in transferring of electrons during oxidation-reduction cycles. This family is used to maintain redox potentials and protein homeostasis within the ER.

View Article and Find Full Text PDF

The bone marrow microenvironment (BMM) provides input via production of cytokines, chemokines, extracellular matrixes in the context of lower oxygen levels that influences self-renewal, survival, differentiation, progression, and therapeutic resistance of multiple myeloma and leukemic cells. Within the context of the BMM, tumor cells are supported by osteoblasts, bone marrow stromal cells (BMSCs), fibroblasts, myeloid cells, endothelial cells and blood vessels, as well as extracellular matrix (ECM) that contribute to tumor progression. Environmental mediated-drug resistance (EM-DR) contains cell adhesion-mediated drug resistance (CAM-DR) and soluble factor-mediated drug resistance (SM-DR) that contributes to de novo drug resistance.

View Article and Find Full Text PDF

Calcium ions (Ca) play an important role as second messengers in regulating a plethora of physiological and pathological processes, including the progression of cancer. Several selective and non-selective Ca-permeable ion channels are implicated in mediating Ca signaling in cancer cells. In this review, we are focusing on TRPC1, a member of the TRP protein superfamily and a potential modulator of store-operated Ca entry (SOCE) pathways.

View Article and Find Full Text PDF

Bone-metastatic castration-resistant prostate cancer (CRPC) is lethal due to inherent resistance to androgen deprivation therapy, chemotherapy, and targeted therapies. Despite the fact that a majority of CRPC patients (approximately 70%) harbor a constitutively active PI3K survival pathway, targeting the PI3K/mTOR pathway has failed to increase overall survival in clinical trials. Here, we identified two separate and independent survival pathways induced by the bone tumor microenvironment that are hyperactivated in CRPC and confer resistance to PI3K inhibitors.

View Article and Find Full Text PDF

Multiple myeloma (MM) cells demonstrate high basal endoplasmic reticulum (ER) stress and are typically exquisitely sensitive to agents such as proteasome inhibitors that activate the unfolded protein response. The flavin adenosine dinucleotide (FAD) containing endoplasmic reticulum oxidoreductin enzyme (Ero1L) catalyzes de-novo disulfide bridge formation of ER resident proteins and contributes to proper protein folding. Here we show that increased Ero1L expression is prognostic of poor outcomes for MM patients relapsing on therapy.

View Article and Find Full Text PDF

MitoNEET (gene ) is a mitochondrial outer membrane [2Fe-2S] protein and is a potential drug target in several metabolic diseases. Previous studies have demonstrated that mitoNEET functions as a redox-active and pH-sensing protein that regulates mitochondrial metabolism, although the structural basis of the potential drug binding site(s) remains elusive. Here we report the crystal structure of the soluble domain of human mitoNEET with a sulfonamide ligand, furosemide.

View Article and Find Full Text PDF

Treatment options for patients with multiple myeloma (MM) have increased during the past decade. Despite the significant advances, challenges remain on which combination strategies will provide the optimal response for any given patient. Defining optimal combination strategies and corresponding companion diagnostics, that will guide clinical decisions are required to target relapsed or refractory multiple myeloma (RRMM) in order to improve disease progression, survival and quality of life for patients with MM.

View Article and Find Full Text PDF

Multiple myeloma is a plasma cell malignancy that homes aberrantly to bone causing extensive skeletal destruction. Despite the development of novel therapeutic agents that have significantly improved overall survival, multiple myeloma remains an incurable disease. Matrix metalloproteinase-2 (MMP-2) is associated with cancer and is significantly overexpressed in the bone marrow of myeloma patients.

View Article and Find Full Text PDF

The emergence of drug resistance continues to be a major hurdle towards improving patient outcomes for the treatment of Multiple Myeloma. MTI-101 is a first-in-class peptidomimetic that binds a CD44/ITGA4 containing complex and triggers necrotic cell death in multiple myeloma cell lines. In this report, we show that acquisition of resistance to MTI-101 correlates with changes in expression of genes predicted to attenuate Ca flux.

View Article and Find Full Text PDF

In this report we utilized zebrafish (Danio rerio) embryos in a phenotypical high-content screen (HCS) to identify novel leads in a cancer drug discovery program. We initially validated our HCS model using the flavin adenosine dinucleotide (FAD) containing endoplasmic reticulum (ER) enzyme, endoplasmic reticulum oxidoreductase (ERO1) inhibitor EN460. EN460 showed a dose response effect on the embryos with a dose of 10μM being significantly lethal during early embryonic development.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a malignant plasma cell disorder, clinically characterized by osteolytic lesions, immunodeficiency, and renal disease. Over the past decade, MM therapy is significantly improved by the introduction of novel therapeutics such as immunomodulatory agents (thalidomide, lenalidomide, and pomalidomide), proteasome inhibitors (bortezomib, carfilzomib, and ixazomib), monoclonal antibodies (daratumumab and elotuzumab), histone deacetylase (HDAC) inhibitors (Panobinostat). The clinical success of these agents has clearly identified vulnerabilities intrinsic to the MM cell, as well as targets that emanate from the tumor microenvironment.

View Article and Find Full Text PDF

Multiple myeloma (MM) remains an incurable disease despite improved treatments, including lenalidomide/pomalidomide and bortezomib/carfilzomib based therapies and high-dose chemotherapy with autologous stem cell rescue. New drug targets are needed to further improve treatment outcomes. Nuclear export of macromolecules is misregulated in many cancers, including in hematological malignancies such as MM.

View Article and Find Full Text PDF

Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma cell lines. Because of the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as a single agent using two myeloma models that consider the bone marrow microenvironment.

View Article and Find Full Text PDF

Despite the success of tyrosine kinase inhibitor (TKI) therapy in patients with chronic myeloid leukemia (CML), minimal residual disease persists, requiring indefinite treatment. Accumulated evidence has shown that leukemic stem cells (LSCs) in the bone marrow can survive TKI treatment via downstream BCR-ABL1-independent signaling pathways that are activated by soluble growth factors and interactions with the extracellular matrix in the bone marrow microenvironment. Research efforts have therefore turned to the identification and development of agents that target LSCs, and together with TKIs, have the potential to eradicate CML.

View Article and Find Full Text PDF

Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases that act as key regulatory elements in cell cycle progression. We describe the development of highly potent diaminothiazole inhibitors of CDK2 (IC50 = 0.0009-0.

View Article and Find Full Text PDF