Am J Physiol Heart Circ Physiol
August 2003
Creatine kinase (CK) and glycolysis represent important energy-buffering processes in the cardiac myocyte. Although the role of compartmentalized CK in energy transfer has been investigated intensely, similar duties for intracellular glycolysis have not been demonstrated. By measuring the response time of mitochondrial oxygen consumption to dynamic workload jumps (tmito) in isolated rabbit hearts, we studied the effect of inhibiting energetic systems (CK and/or glycolysis) on transcytosolic signal transduction that couples cytosolic ATP hydrolysis to activation of oxidative phosphorylation.
View Article and Find Full Text PDFAmino acid-induced cell swelling stimulates conversion of glucose into glycogen in isolated hepatocytes. Activation of glycogen synthase (GS) phosphatase, caused by the fall in intracellular chloride accompanying regulatory volume decrease, and activation of phosphoinositide 3-kinase (PI 3-kinase), induced by cell swelling, have been proposed as underlying mechanisms. Because PI 3-kinase controls autophagic proteolysis, we examined the possibility that PI 3-kinase inhibitors interfere with glycogen production due to their anti-proteolytic action.
View Article and Find Full Text PDFBackground/aims: High-fat (HF) diets cause glucose intolerance. Fibrates improve glucose tolerance. We have tried to obtain information on possible hepatic mechanisms contributing to this effect.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2002
Our goal was to determine whether mice genetically altered to lack either creatine kinase (M/MtCK(-/-)) or adenylate kinase (AK(-/-)) show altered properties in the dynamic regulation of myocardial oxygen consumption (MVO(2)). We measured contractile function, oxygen consumption, and the mean response time of oxygen consumption to a step increase in heart rate [i.e.
View Article and Find Full Text PDF