Publications by authors named "Loretta Y Y Chan"

Key Points: Long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 () was upregulated in human and murine AKI. It returned to baseline after recovery in humans. Its knockdown preserved kidney function in animals.

View Article and Find Full Text PDF

Background: Thromboembolic events are prevalent in chronic kidney disease (CKD) patients due to increased thrombin generation leading to a hypercoagulable state. We previously demonstrated that inhibition of protease-activated receptor-1 (PAR-1) by vorapaxar reduces kidney fibrosis.

Methods: We used an animal model of unilateral ischemia-reperfusion injury-induced CKD to explore the tubulovascular crosstalk mechanisms of PAR-1 in acute kidney injury (AKI)-to-CKD transition.

View Article and Find Full Text PDF

Mitochondria take part in a network of intracellular processes that regulate homeostasis. Defects in mitochondrial function are key pathophysiological changes during AKI. Although Wnt/β-catenin signaling mediates mitochondrial dysfunction in chronic kidney fibrosis, little is known of the influence of β-catenin on mitochondrial function in AKI.

View Article and Find Full Text PDF

Lipotoxicity has been implicated in the pathogenesis of obesity-related kidney damage and propagates chronic kidney injury like diabetic kidney disease; however, the underlying mechanisms have not yet been fully elucidated. To date, reduction of lipid acquisition and enhancement of lipid metabolism are the major, albeit non-specific, approaches to improve lipotoxic kidney damage. In the kidneys of high-fat diet (HFD)-fed mice and tubule cells cultured with palmitic acid (PA), we observed a dramatic upregulation of the long intergenic non-coding RNA-p21 () through a p53-dependent mechanism.

View Article and Find Full Text PDF

Spleen tyrosine kinase (Syk) is a non-receptor tyrosine kinase involved in signal transduction in a variety of immune responses. It has been demonstrated that Syk plays a pathogenic role in orchestrating inflammatory responses and cell proliferation in human mesangial cells (HMC) in IgA nephropathy (IgAN). However, whether Syk is involved in tubular damage in IgAN remains unknown.

View Article and Find Full Text PDF

Kallistatin is a multiple functional serine protease inhibitor that protects against vascular injury, organ damage and tumor progression. Kallistatin treatment reduces inflammation and fibrosis in the progression of chronic kidney disease (CKD), but the molecular mechanisms underlying this protective process and whether kallistatin plays an endogenous role are incompletely understood. In the present study, we observed that renal kallistatin levels were significantly lower in patients with CKD.

View Article and Find Full Text PDF

Protease-activated receptor (PAR)-1 has emerged as a key profibrotic player in various organs including kidney. PAR-1 activation leads to deposition of extracellular matrix (ECM) proteins in the tubulointerstitium and induction of epithelial-mesenchymal transition (EMT) during renal fibrosis. We tested the anti-fibrotic potential of vorapaxar, a clinically approved PAR-1 antagonist for cardiovascular protection, in an experimental kidney fibrosis model of unilateral ureteral obstruction (UUO) and an AKI-to-chronic kidney disease (CKD) transition model of unilateral ischemia-reperfusion injury (UIRI), and dissected the underlying renoprotective mechanisms using rat tubular epithelial cells.

View Article and Find Full Text PDF

Background: Difference of perspective between patients and physicians over integrative medicine (IM) research and service provision remains unclear despite significant use worldwide. We observed an exceptionally low utilisation of IM and potential underreporting in diabetes. We aimed to explore the barriers and recommendations regarding service delivery and research of IM service among diabetes patients and physicians.

View Article and Find Full Text PDF

Obesity is featured by chronic systemic low-grade inflammation that eventually contributes to the development of insulin resistance. Toll-like receptor 4 (TLR4) is an important mediator that triggers the innate immune response by activating inflammatory signaling cascades. Human, animal and cell culture studies identified saturated fatty acids (SFAs), the dominant non-esterified fatty acid (NEFA) in the circulation of obese subjects, as non-microbial agonists that trigger the inflammatory response via activating TLR4 signaling, which acts as an important causative link between fatty acid overload, chronic low-grade inflammation and the related metabolic aberrations.

View Article and Find Full Text PDF

Recent advances in the understanding of lipid metabolism suggest a critical role of endoplasmic reticulum (ER) stress in obesity-induced kidney injury. Hepatocyte growth factor (HGF) is a pleiotropic cytokine frequently featured in stem cell therapy with distinct renotropic benefits. This study aims to define the potential link between human induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSCs)/bone marrow-derived MSCs (BM-MSCs) and ER stress in lipotoxic kidney injury induced by palmitic acid (PA) in renal tubular cells and by high-fat diet (HFD) in mice.

View Article and Find Full Text PDF

Imbalance of Wnt/β-catenin signaling in renal cells is associated with renal dysfunction, yet the precise mechanism is poorly understood. Previously we observed activated Wnt/β-catenin signaling in renal tubules during proteinuric nephropathy with an unknown net effect. Therefore, to identify the definitive role of tubular Wnt/β-catenin, we generated a novel transgenic "Tubcat" mouse conditionally expressing stabilized β-catenin specifically in renal tubules following tamoxifen administration.

View Article and Find Full Text PDF

Background: Complement C5 mediates pro-inflammatory responses in many immune-related renal diseases. Given that the C5a level is elevated in diabetes, we investigated whether activation of C5a/C5aR signalling plays a pathogenic role in diabetic nephropathy (DN) and the therapeutic potential of C5a inhibition for renal fibrosis.

Methods: Human renal biopsies from patients with DN and control subjects were used for immunohistochemical staining of complement C5 components.

View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSCs) are emerging as attractive options for use in cell replacement therapy, but their effect in kidney diseases remains unknown. Here, we showed that intravenous injection of iPS-MSCs protect against renal function loss in both short-term and long-term models of adriamycin nephropathy (AN). In the short-term AN model, iPS-MSCs conferred a substantial anti-apoptotic effect on tubular cells, associated with a downregulation of Bax and Bax/Bcl2 ratio and an upregulation of survivin expression.

View Article and Find Full Text PDF

Introduction: Diabetes mellitus and diabetic nephropathy (DN) are prevalent and costly to manage. DN is the leading cause of end-stage kidney disease. Conventional therapy blocking the renin-angiotensin system has only achieved limited effect in preserving renal function.

View Article and Find Full Text PDF

Kallistatin is a serine protease inhibitor with anti-inflammatory, anti-angiogenic, and anti-oxidative properties. Since oxidative stress plays a critical role in the pathogenesis of diabetic nephropathy, we studied the effect and mechanisms of action of kallistatin superinduction. Using ultrasound-microbubble-mediated gene transfer, kallistatin overexpression was induced in kidney tubules.

View Article and Find Full Text PDF

Glomerulo-podocytic communication plays an important role in the podocytic injury in IgA nephropathy (IgAN). In this study, we examine the role of podocytic angiotensin II receptor subtype 1 (AT1R) and prorenin receptor (PRR) in podocytic apoptosis in IgAN. Polymeric IgA (pIgA) was isolated from patients with IgAN and healthy controls.

View Article and Find Full Text PDF

Bone morphogenetic protein 7 (BMP7) has been reported to confer renoprotective effects in acute and chronic kidney disease models, but its potential role in Type 2 diabetic nephropathy remains unknown. In cultured human proximal tubular epithelial cells (PTECs), exposure to advanced glycation end-products (AGEs) induced overexpression of intercellular adhesion molecule 1 (ICAM1), monocyte chemoattractant protein 1 (MCP1), interleukin 8 (IL-8) and interleukin 6 (IL-6), involving activation of p44/42 and p38 mitogen-activated protein kinase (MAPK) signalling. BMP7 dose-dependently attenuated AGE-induced up-regulation of ICAM1, MCP1, IL-8 and IL-6 at both mRNA and protein levels.

View Article and Find Full Text PDF

Objective: Kidney injury molecule-1 (KIM-1) serves as a useful marker for monitoring tubular injury, and sustained KIM-1 expression may be implicated in chronic kidney fibrosis. In this study, we examine the kinetics and mechanisms of KIM-1 release in human proximal tubular epithelial cells (PTEC) under the activation by major pathologic players in diabetic nephropathy, including human serum albumin (HSA), glycated albumin (AGE-BSA) and high glucose.

Materials And Methods: The kinetics of KIM-1 release by PTEC under activation with HSA, AGE-BSA and high glucose, were determined by RT-PCR and ELISA.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BM-MSCs) have recently shown promise as a therapeutic tool in various types of chronic kidney disease (CKD) models. However, the mechanism of action is incompletely understood. As renal prognosis in CKD is largely determined by the degree of renal tubular injury that correlates with residual proteinuria, we hypothesized that BM-MSCs may exert modulatory effects on renal tubular inflammation and epithelial-to-mesenchymal transition (EMT) under a protein-overloaded milieu.

View Article and Find Full Text PDF

Tissue kallikrein (KLK1) expression is up-regulated in human diabetic kidney tissue and induced by high glucose (HG) in human proximal tubular epithelial cells (PTEC). Since the kallikrein-kinin system (KKS) has been linked to cellular inflammatory process in many diseases, it is likely that KLK1 expression may mediate the inflammatory process during the development of diabetic nephropathy. In this study, we explored the role of KLK1 in tubular pro-inflammatory responses under the diabetic milieu.

View Article and Find Full Text PDF

Protein overload activates proximal tubule epithelial cells (PTECs) to release chemokines. Bone morphogenetic protein-7 (BMP-7) reduces infiltrating cells and tissue damage in acute and chronic renal injuries. The present study examines the inhibitory effect and related molecular mechanism of BMP-7 on chemokine and adhesion molecule synthesis by PTECs activated with human serum albumin (HSA).

View Article and Find Full Text PDF

We recently showed that Toll-like receptor (TLR) TLR4 was overexpressed in the human diabetic kidney, which could promote tubular inflammation. Here we explored whether the TLR4 antagonist, CRX-526, has therapeutic potential to attenuate renal injuries and slow the progression of advanced diabetic nephropathy in wild-type and endothelial nitric oxide synthase (eNOS) knockout mice. In the latter, the endogenous TLR4 ligand, high-mobility group box 1, was upregulated more than in wild-type animals.

View Article and Find Full Text PDF

Tubulointerstitial injury is a common pathway in progressive renal impairment and human proximal tubular epithelial cells (PTEC) play a crucial role in this process. Kidney injury molecule-1 (KIM-1) has received increasing attention due to its potential utility as the therapeutic target and biomarker for kidney injury. This study aims to explore the underlying mechanism regulating the release of KIM-1.

View Article and Find Full Text PDF

Background: In peritoneal dialysis (PD), the peritoneal membrane exhibits structural and functional changes following continuous exposure to the non-physiological peritoneal dialysis fluid (PDF). In this study, we examined the effect of PDF on peritoneal adipose tissue in a diabetic milieu.

Methods: Six-week-old db/db mice and their non-diabetic littermates (db/m) were subjected to uninephrectomy.

View Article and Find Full Text PDF

Inflammation contributes to the tubulointerstitial lesions of diabetic nephropathy. Toll-like receptors (TLRs) modulate immune responses and inflammatory diseases, but their role in diabetic nephropathy is not well understood. In this study, we found increased expression of TLR4 but not of TLR2 in the renal tubules of human kidneys with diabetic nephropathy compared with expression of TLR4 and TLR2 in normal kidney and in kidney disease from other causes.

View Article and Find Full Text PDF