Publications by authors named "Loretta Ma"

Thymic stromal lymphopoietin (TSLP) is a cytokine that is known to play a role in inflammatory conditions, especially asthma and atopic dermatitis. It is also recognized to be expressed in human adipose tissue. TSLP production from human adipocytes is stimulated by thyroid-stimulating hormone (TSH).

View Article and Find Full Text PDF

Objectives: Obesity and type 2 diabetes often coexist. The effect of hyperglycemia on adipose tissue is, therefore, of interest. Although studies have shown that high glucose (HG) concentrations do not inhibit adipocyte differentiation, the resulting adipocyte phenotype has not been investigated.

View Article and Find Full Text PDF

When recombinant human (rh) thyroid-stimulating hormone (TSH) is administered to thyroid cancer survivors, an acute extra-thyroidal effect raises pro-inflammatory cytokines and activates platelets. Thymic stromal lymphopoietin (TSLP) is a cytokine recently implicated in platelet activation. Our aim was to measure platelet microparticle levels after rhTSH stimulation in vivo, and to investigate TSLP expression in TSH-stimulated human adipocytes in culture.

View Article and Find Full Text PDF

Objective: Apolipoprotein (apo) A-II is the second major apo of high-density lipoproteins, yet its pathophysiological roles in the development of atherosclerosis remain unknown. We aimed to examine whether apo A-II plays any role in atherogenesis and, if so, to elucidate the mechanism involved.

Methods And Results: We compared the susceptibility of human apo A-II transgenic (Tg) rabbits to cholesterol diet-induced atherosclerosis with non-Tg littermate rabbits.

View Article and Find Full Text PDF

Background: ABCA1 is known to suppress proinflammatory cytokines.

Results: ABCA1 activates PKA and up-regulates anti-inflammatory cytokine IL-10. Elevated PKA transforms macrophages to M2-like phenotype.

View Article and Find Full Text PDF

ATP-binding cassette protein A1 (ABCA1) is a key plasma membrane protein required for the efflux of cellular cholesterol to extracellular acceptors, particularly to apolipoprotein A-I (apoA-I). This process is essential to maintain cholesterol homeostasis in the body. The detailed molecular mechanisms, however, are still insufficiently understood.

View Article and Find Full Text PDF

Macrophage foam cell is the predominant cell type in atherosclerotic lesions. Removal of excess cholesterol from macrophages thus offers effective protection against atherosclerosis. Here we report that a protein kinase A (PKA)-anchoring inhibitor, st-Ht31, induces robust cholesterol/phospholipid efflux, and ATP-binding cassette transporter A1 (ABCA1) greatly facilitates this process.

View Article and Find Full Text PDF

ATP-binding cassette transporter A1 (ABCA1) is required for the lipidation of apolipoprotein A-I (apoA-I), although molecular mechanisms supporting this process remain poorly defined. In this study, we focused on the role of cytosolic Ca(2+) and its signaling and found that cytosolic Ca(2+) was required for cholesterol efflux to apoA-I. Removing extracellular Ca(2+) or chelating cytosolic Ca(2+) were equally inhibitory for apoA-I lipidation.

View Article and Find Full Text PDF

ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-poor apolipoprotein A-I (apoA-I) and generates HDL. Here, we demonstrate that ABCA1 also directly mediates the production of apoA-I free microparticles. In baby hamster kidney (BHK) cells and RAW macrophages, ABCA1 expression led to lipid efflux in the absence of apoA-I and released large microparticles devoid of apoB and apoE.

View Article and Find Full Text PDF