Publications by authors named "Loretta Cerruti"

Intensive chemotherapy for acute leukemia can usually induce complete remission, but fails in many patients to eradicate the leukemia stem cells responsible for relapse. There is accumulating evidence that these relapse-inducing cells are maintained and protected by signals provided by the microenvironment. Thus, inhibition of niche signals is a proposed strategy to target leukemia stem cells but this requires knowledge of the critical signals and may be subject to compensatory mechanisms.

View Article and Find Full Text PDF

We used an N-ethyl-N-nitrosurea-based forward genetic screen in mice to identify new genes and alleles that regulate erythropoiesis. Here, we describe a mouse line expressing an activated form of the K-Cl cotransporter Slc12a4 (Kcc1), which results in a semi-dominant microcytosis of red cells. A missense mutation from methionine to lysine in the cytoplasmic tail of Kcc1 impairs phosphorylation of adjacent threonines required for inhibiting cotransporter activity.

View Article and Find Full Text PDF

Human globin gene expression during development is modulated by transcription factors in a stage-dependent manner. However, the mechanisms controlling the process are still largely unknown. In this study, we found that a nuclear protein, LYAR (human homologue of mouse Ly-1 antibody reactive clone) directly interacted with the methyltransferase PRMT5 which triggers the histone H4 Arg3 symmetric dimethylation (H4R3me2s) mark.

View Article and Find Full Text PDF

Background: Pharmacologic reactivation of fetal hemoglobin expression is a promising strategy for treatment of sickle cell disease and β-thalassemia. The objective of this study was to investigate the effect of the methyl transferase inhibitor adenosine-2',3'-dialdehyde (Adox) on induction of human fetal hemoglobin (HbF) in K562 cells and human hematopoietic progenitor cells.

Methods: Expression levels of human fetal hemoglobin were assessed by northern blot analysis and Real-time PCR.

View Article and Find Full Text PDF

Background: Histone H3 lysine 4 (K4) methylation has been linked with transcriptional activity in mammalian cells. The WD40-repeat protein, WDR5, is an essential component of the MLL complex that induces histone H3 K4 methylation, but the role of WDR5 in human globin gene regulation has not yet been established.

Design And Methods: To study the role of WDR5 in human globin gene regulation, we performed knockdown experiments in both K562 cells and primary human bone marrow erythroid progenitor cells (BMC).

View Article and Find Full Text PDF

Defining the molecular mechanisms underpinning fetal (gamma) globin gene silencing may provide strategies for reactivation of gamma-gene expression, a major therapeutic objective in patients with beta-thalassemia and sickle cell disease (SCD). We have previously demonstrated that symmetric methylation of histone H4 Arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for recruitment of the DNA methyltransferase DNMT3A to the gamma-promoter, and subsequent DNA methylation and gene silencing. Here we show in an erythroid cell line, and in primary adult erythroid progenitors that PRMT5 induces additional repressive epigenetic marks at the gamma-promoter through the assembly of a multiprotein repressor complex containing the histone modifying enzymes SUV4-20h1, casein kinase 2alpha (CK2alpha), and components of the nucleosome remodeling and histone deacetylation complex.

View Article and Find Full Text PDF

Mammalian gene silencing is established through methylation of histones and DNA, although the order in which these modifications occur remains contentious. Using the human beta-globin locus as a model, we demonstrate that symmetric methylation of histone H4 arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for subsequent DNA methylation. H4R3me2s serves as a direct binding target for the DNA methyltransferase DNMT3A, which interacts through the ADD domain containing the PHD motif.

View Article and Find Full Text PDF

In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle.

View Article and Find Full Text PDF

Binding of the stage selector protein (SSP) to the stage selector element (SSE) in the human gamma-globin promoter contributes to the preferential expression of the gamma-gene in fetal erythroid cells. The SSP contains the transcription factor CP2 and an erythroid-specific partner, NF-E4. The NF-E4 gene encodes a 22-kDa polypeptide employing a non-AUG initiation codon.

View Article and Find Full Text PDF

Acetylation provides one mechanism by which the functional diversity of individual transcription factors can be expanded. This is valuable in the setting of complex multigene loci that are regulated by a limited number of proteins, such as the human beta-globin locus. We have studied the role of acetylation in the regulation of the transcription factor NF-E4, a component of a protein complex that facilitates the preferential expression of the human gamma-globin genes in fetal erythroid cells.

View Article and Find Full Text PDF

The human stage selector protein, a complex containing the ubiquitous transcription factor CP2 and the erythroid-specific factor p22 NF-E4, facilitates the interaction of the gamma-globin genes with the locus control region in fetal erythroid cells. Enforced expression of p22 NF-E4 in K562 cells and human cord blood progenitors increases fetal globin gene expression, and in progenitors, reduces beta-globin expression. To examine the role of NF-E4 in an in vivo model of hemoglobin switching, we enforced the expression of p22 NF-E4 in transgenic mice carrying the human beta-globin locus yeast artificial chromosome.

View Article and Find Full Text PDF

The Drosophila gene grainyhead is the founding member of a large family of genes encoding developmental transcription factors that are highly conserved from fly to human. The family consists of two main branches, with grainyhead as the ancestral gene for one branch and the recently cloned Drosophila CP2 as the ancestral gene for the other. We now extend this family with the identification of another novel mammalian member, Sister-of-Mammalian Grainyhead (SOM), which is phylogenetically aligned with grainyhead.

View Article and Find Full Text PDF

A new strategy to improve the therapeutic utility of redirected T cells for cancer involves the development of novel Ag-specific chimeric receptors capable of stimulating optimal and sustained T cell antitumor activity in vivo. Given that T cells require both primary and costimulatory signals for optimal activation and that many tumors do not express critical costimulatory ligands, modified single-chain Ab receptors have been engineered to codeliver CD28 costimulation. In this study, we have compared the antitumor potency of primary T lymphocytes expressing carcinoembryonic Ag (CEA)-reactive chimeric receptors that incorporate either TCR-zeta or CD28/TCR-zeta signaling.

View Article and Find Full Text PDF

Tumor cells are usually weakly immunogenic as they largely express self-antigens and can down-regulate major histocompatability complex/peptide molecules and critical costimulatory ligands. The challenge for immunotherapies has been to provide vigorous immune effector cells that circumvent these tumor escape mechanisms and eradicate established tumors. One promising approach is to engineer T cells with single-chain antibody receptors, and since T cells require 2 distinct signals for optimal activation, we have compared the therapeutic efficacy of erbB2-reactive chimeric receptors that contain either T-cell receptor zeta (TCR-zeta) or CD28/TCR-zeta signaling domains.

View Article and Find Full Text PDF

The Drosophila transcription factor Grainyhead regulates several key developmental processes. Three mammalian genes, CP2, LBP-1a and LBP-9 have been previously identified as homologues of grainyhead. We now report the cloning of two new mammalian genes (Mammalian grainyhead (MGR) and Brother-of-MGR (BOM)) and one new Drosophila gene (dCP2) that rewrite the phylogeny of this family.

View Article and Find Full Text PDF