Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype.
View Article and Find Full Text PDFThe neurotrophic factors Midkine (MK) and Pleiotrophin (PTN) have been suggested to modulate drugs of abuse-induced effects. To test this hypothesis, cocaine (10 and 15mg/kg)-induced conditioned place preference (CPP) was rendered in PTN knockout (PTN-/-), MK knockout (MK-/-) and wild type (WT+/+) mice, and then extinguished after repeated saline injections (distributed in 4 extinction sessions). Cocaine induced a similar CPP in all the three genotypes.
View Article and Find Full Text PDFThe neurotrophic factors pleiotrophin (PTN) and midkine (MK) have been shown to modulate amphetamine-induced neurotoxicity. Accordingly, PTN-/- and MK-/- mice show an increased vulnerability to amphetamine-induced neurotoxic effects. In an effort to uncover new pharmacological targets to prevent amphetamine neurotoxic effects, we have now used a proteomic approach to study protein phosphorylation, in which we combined phosphoprotein enrichment, by immobilized metal affinity chromatography (IMAC), with two-dimensional gel electrophoresis and mass spectrometry, in order to identify the phosphoproteins regulated in the striatum of PTN-/-, MK-/- and wild type (WT) mice treated with amphetamine.
View Article and Find Full Text PDF