Carvacrol has demonstrated antioxidant activity; however, its high volatility and low water solubility limit its direct application in food matrices. Then, an effective encapsulation system is required to protect it. This study aimed to design and characterize a carvacrol-based additive encapsulated in a spray-dried multilayer emulsion based on chitosan/sodium alginate/maltodextrin.
View Article and Find Full Text PDFWe evaluated and compared the biomechanical properties of Leukocyte-and Platelet Rich Fibrin L-PRF clots and membranes derived from smoker and nonsmoker donors. Twenty venous-blood donors (aged 18 to 50 years) were included after signing informed consent forms. L-PRF clots were analyzed and then compressed to obtain L-PRF membranes.
View Article and Find Full Text PDFThe process of disinfection of wastewater must use friendly materials with the environment that achieve the inhibition of bacterial growth, aiming to improve the quality of the water. In this study, electrospun nanocomposites CS (chitosan)/AgNPs (silver nanoparticles) was developed for wastewater disinfection through filtration. First, AgNPs were synthesized by a green synthesis method using aloe vera (Aloe Barbadensis Miller) extract as a reducing agent, and AgNO as metal precursor.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFDesign strategies for small diameter vascular grafts are converging toward native-inspired tissue engineered grafts. A new automated technology is presented that combines a dip-spinning methodology for depositioning concentric cell-laden hydrogel layers, with an adapted solution blow spinning (SBS) device for intercalated placement of aligned reinforcement nanofibres. This additive manufacture approach allows the assembly of bio-inspired structural configurations of concentric cell patterns with fibres at specific angles and wavy arrangements.
View Article and Find Full Text PDFWater has a key role in the functioning of all biological systems, it mediates many biochemical reactions, as well as other biological activities such as material biocompatibility. Water is often considered as an inert solvent, however at the molecular level, it shows different behavior when sorbed onto surfaces like polymeric implants. Three states of water have been recognized: water, which does not freeze even at -100 °C; water, which freezes below 0 °C; and, water, which freezes at 0 °C like water.
View Article and Find Full Text PDFPolymer scaffolds are used as an alternative to support tissue regeneration when it does not occur on its own. Cell response on polymer scaffolds is determined by factors such as polymer composition, topology, and the presence of other molecules. We evaluated the cellular response of murine skeletal muscle myoblasts on aligned or unaligned fibers obtained by electrospinning poly(ε-caprolactone) (PCL), and blends with poly(lactic-co-glycolic acid) (PLGA) or decorin, a proteoglycan known to regulate myogenesis.
View Article and Find Full Text PDFSatellite cells are a small cell population that function as muscle-specific adult stem cells. When muscle damage occurs, these cells are able to activate, proliferate, and ultimately fuse with each other in order to form new myofibers or fuse with existing ones. For tissue engineering applications, obtaining a sufficient number of myoblasts prior transplantation that maintains their regenerative capacity is critical.
View Article and Find Full Text PDFPrediction of the dynamic properties of water uptake across polymer libraries can accelerate polymer selection for a specific application. We first built semiempirical models using Artificial Neural Networks and all water uptake data, as individual input. These models give very good correlations (R (2) > 0.
View Article and Find Full Text PDFThe objectives of this work were: (1) to select suitable compositions of tyrosine-derived polycarbonates for controlled delivery of voclosporin, a potent drug candidate to treat ocular diseases, (2) to establish a structure-function relationship between key molecular characteristics of biodegradable polymer matrices and drug release kinetics, and (3) to identify factors contributing in the rate of drug release. For the first time, the experimental study of polymeric drug release was accompanied by a hierarchical sequence of three computational methods. First, suitable polymer compositions used in subsequent neural network modeling were determined by means of response surface methodology (RSM).
View Article and Find Full Text PDFThe role of hydration in degradation and erosion of materials, especially biomaterials used in scaffolds and implants, was investigated by studying the distribution of water at length scales from 0.1 nm to 0.1 mm using Raman spectroscopy, small-angle neutron scattering (SANS), Raman confocal imaging, and scanning electron microscopy (SEM).
View Article and Find Full Text PDF