Publications by authors named "Lorenzo Spadini"

Aims: Yttrium (Y) holds significant industrial and economic importance, being listed as a critical element on the European list of critical elements, thus emphasizing the high priority for its recovery. Bacterial strategies play a crucial role in the biorecovery of metals, offering a promising and environmentally friendly approach. Therefore, gaining a comprehensive understanding of the underlying mechanisms behind bacterial resistance, as well as the processes of bioaccumulation and biotransformation, is of paramount importance.

View Article and Find Full Text PDF

Numerous protocols for dissolved organic carbon (DOC) measurements on natural water are used in the literature. An ISO protocol for the determination of DOC exists since 2018, but it is certified for DOC values ≥ 1 mg L, while many publications report DOC values much lower. In addition, this ISO protocol does not include indications on vials cleaning, filtering material, and type of caps and septa to be used.

View Article and Find Full Text PDF

Various pharmaceuticals are essential for livestock farming, but some are highly toxic to aquatic life if they reach surface water bodies. Mediterranean Climate is characterized by dry summers followed by intense autumn storms. We studied the effect of these climatic conditions on the risk of pharmaceutical residues transfer to streams at the catchment-scale.

View Article and Find Full Text PDF

Water stable isotope analysis using Cavity Ring-Down Spectroscopy (CRDS) has a strong between-sample memory effect. The classic approach to correct this memory effect is to inject the sample at least 6 times and ignore the first two to three injections. The average of the remaining injections is then used as measured value.

View Article and Find Full Text PDF

The fate of nanoparticles (NPs) in soil under relevant environmental conditions is still poorly understood. In this study, the mobility of two metal-oxide nanoparticles (CuO and TiO) in contrasting agricultural soils was investigated in water-saturated soil columns. The transport of TiO and CuO-NPs were assessed in six soils with three different textures (from sand to clay) and two contrasted organic matter (OM) contents for each texture.

View Article and Find Full Text PDF

Groundwater is essential for the Earth biosphere but is often contaminated by harmful chemical compounds due to both anthropogenic and natural causes. A key factor controlling the fate of harmful chemicals in groundwater is the reduction/oxidation (redox) conditions. The formation factors for the groundwater redox conditions are insufficiently understood.

View Article and Find Full Text PDF

Particulate matter (PM) induces oxidative stress in vivo, leading to adverse health effects. Oxidative potential (OP) of PM is increasingly studied as a relevant metric for health impact (instead of PM mass concentration) as much of the ambient particle mass do not contribute to PM toxicity. Several assays have been developed to quantify PM oxidative potential and a widely used one is the acellular dithiothreitol (DTT) assay.

View Article and Find Full Text PDF

The conformational impact of environmental biopolymers on metal sorption was studied through Cu sorption on xanthan. The apparent Cu(2+) complexation constant (logK; Cu(2+) + L(-) ↔ CuL(+)) decreased from 2.9 ± 0.

View Article and Find Full Text PDF

Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones.

View Article and Find Full Text PDF

Sulfamethoxazole (SMX) is a persistent sulfonamide antibiotic drug used in the veterinary and human medical sectors and is widely detected in natural waters. To better understand the reactive transport of this antibiotic in soil, the speciation of the SMX-Cu(II)-H(+) system in solution and the combined sorption of these components in a natural vineyard soil were investigated by acid-base titrimetry and infrared spectroscopy. Cu(II) is considered to represent a strongly complexing trace element cation (such as Cd(2+), Zn(2+), Pb(2+), Ni(2+), etc.

View Article and Find Full Text PDF

The effect of soil organic status on copper impact was investigated by means of a microcosm study carried out on a vineyard soil that had been amended with varying types of organic matter during a previous long-term field experiment. Soil microcosms were contaminated at 250 mg Cu kg(-1) and incubated for 35 days. Copper distribution and dynamics were assessed in the solid matrix by a sequential extraction procedure and in the soil solution by measuring total and free exchangeable copper concentrations.

View Article and Find Full Text PDF

The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>>Cd>Zn.

View Article and Find Full Text PDF

The GGGTH sequence has been proposed to be the minimal sequence involved in the binding of a fifth Cu(II) ion in addition to the octarepeat region of the prion protein (PrP) which binds four Cu(II) ions. Coordination of Cu(II) by the N- and C-protected Ac-GGGTH-NH(2) pentapeptide (P(5)) was investigated by using potentiometric titration, electrospray ionization mass spectrometry, UV-vis spectroscopy, electron paramagnetic resonance (EPR) spectroscopy and cyclic voltammetry experiments. Four different Cu(II) complexes were identified and characterized as a function of pH.

View Article and Find Full Text PDF

Nowadays, it is necessary to understand and identify the reactions governing the fate of heavy metals introduced into the environment with low complexing organic compounds, particularly when they are transferred through soils in urban areas. In this work the concomitant influence of pH and acetate on the fate of zinc on siliceous sand was studied in batch and non-saturated column experiments. Total zinc concentrations varied between 2 and 20 mg/l, and total acetate concentrations were fixed at 22, 72, 132, and 223 mM to obtain solution pHs of 4, 5, 6 and 7, respectively.

View Article and Find Full Text PDF

The surface properties of ferrihydrite were studied by combining wet chemical data, Cd(K) EXAFS data, and a surface structure and protonation model of the ferrihydrite surface. Acid-base titration experiments and Cd(II)-ferrihydrite sorption experiments were performed within 3<-log[H(+)]<10.5 and 0.

View Article and Find Full Text PDF