Publications by authors named "Lorenzo Soprani"

DNA oligomers in solution have been found to develop liquid crystal phases via a hierarchical process that involves Watson-Crick base pairing, supramolecular assembly into columns of duplexes, and long-range ordering. The multiscale nature of this phenomenon makes it difficult to quantitatively describe and assess the importance of the various contributions, particularly for very short strands. We performed molecular dynamics simulations based on the coarse-grained oxDNA model, aiming to depict all of the assembly processes involved and the phase behavior of solutions of the DNA GCCG tetramers.

View Article and Find Full Text PDF

The energetic landscape at the interface between electron donating and accepting molecular materials favors efficient conversion of intermolecular charge-transfer (CT) states into free charge carriers (FCC) in high-performance organic solar cells. Here, we elucidate how interfacial energetics, charge generation and radiative recombination are affected by molecular arrangement. We experimentally determine the CT dissociation properties of a series of model, small molecule donor-acceptor blends, where the used acceptors (B2PYMPM, B3PYMPM and B4PYMPM) differ only in the nitrogen position of their lateral pyridine rings.

View Article and Find Full Text PDF

We have used state-of-the-art ab initio restricted active RASPT2 computations using a 16 orbitals, 18 electrons active space to produce an extended three-dimensional map of the potential energy surfaces (PESs) of the ground and first nπ* excited states of azobenzene along CNNC torsion and the two CNN bending angles, which are the most relevant coordinates for the trans-cis photoisomerization process. Through comparison with fully unconstrained optimizations performed at the same level of theory, we show that the three selected coordinates suffice to correctly describe the photoisomerization mechanism and the S-S crossing seam. We also provide a map of the nonadiabatic coupling between the two states in the region where they get closer in energy.

View Article and Find Full Text PDF