Targeting protein-protein interactions (PPIs) has become a common approach to tackle various diseases whose pathobiology is driven by their mis-regulation in important signalling pathways. Modulating PPIs has tremendous untapped therapeutic potential and different approaches can be used to modulate PPIs. Initially, therapeutic effects were mostly sought by inhibiting PPIs.
View Article and Find Full Text PDFThe stabilisation of protein-protein interactions (PPIs) through molecular glues is a novel and promising approach in drug discovery. In stark contrast to research in protein-protein inhibition the field of stabilisation remains underdeveloped with comparatively few examples of small-molecule stabilisers of PPIs reported to date. At the same time identifying molecular glues has received recent sustained interest, especially in the fields of targeted protein degradation and 14-3-3 PPIs.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
August 2021
14-3-3 proteins regulate many intracellular processes and their ability to bind in subtly different fashions to their numerous partner proteins provides attractive drug-targeting points for a range of diseases. Schnurri-3 is a suppressor of mouse bone formation and a candidate target for novel osteoporosis therapeutics, and thus it is of interest to determine whether it interacts with 14-3-3. In this work, potential 14-3-3 interaction sites on mammalian Schnurri-3 were identified by an in silico analysis of its protein sequence.
View Article and Find Full Text PDFExpansion of the polyglutamine tract in the N terminus of Ataxin-1 is the main cause of the neurodegenerative disease, spinocerebellar ataxia type 1 (SCA1). However, the C-terminal part of the protein - including its AXH domain and a phosphorylation on residue serine 776 - also plays a crucial role in disease development. This phosphorylation event is known to be crucial for the interaction of Ataxin-1 with the 14-3-3 adaptor proteins and has been shown to indirectly contribute to Ataxin-1 stability.
View Article and Find Full Text PDFB-cell linker protein (BLNK) is an adaptor protein that orchestrates signalling downstream of B-cell receptors. It has been reported to undergo proteasomal degradation upon binding to 14-3-3 proteins. Here, we report the first biophysical and structural study of this protein-protein interaction (PPI).
View Article and Find Full Text PDFThe SH2 domain-containing protein of 76 kDa, SLP76, is an important adaptor protein that coordinates a complex protein network downstream of T-cell receptors (TCR), ultimately regulating the immune response. Upon phosphorylation on Ser376, SLP76 interacts with 14-3-3 adaptor proteins, which leads to its proteolytic degradation. This provides a negative feedback mechanism by which TCR signalling can be controlled.
View Article and Find Full Text PDF