We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE) cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent.
View Article and Find Full Text PDFAims: Perivascular adipose tissue can be involved in the process of cardiovascular pathology through the release of adipokines, namely adiponectins. Monomeric adiponectin has been shown to increase coronary blood flow in anesthetized pigs through increased nitric oxide (NO) release and the involvement of adiponectin receptor 1 (AdipoR1). The present study was therefore planned to examine the effects of monomeric adiponectin on NO release and Ca(2+) transients in porcine aortic endothelial cells (PAEs) in normal/high glucose conditions and the related mechanisms.
View Article and Find Full Text PDFArtemetin is one of the main components of Achillea millefolium L. and Artemisia absinthium, which have long been used for the treatment of various diseases. To date, however, available information about protective effects of their extracts on the cardiovascular system is scarce.
View Article and Find Full Text PDFBackground: Levosimendan protects rat liver against peroxidative injuries through mechanisms related to nitric oxide (NO) production and mitochondrial ATP-dependent K (mitoKATP) channels opening. However, whether levosimendan could modulate the cross-talk between apoptosis and autophagy in the liver is still a matter of debate. Thus, the aim of this study was to examine the role of levosimendan as a modulator of the apoptosis/autophagy interplay in liver cells subjected to peroxidation and the related involvement of NO and mitoKATP.
View Article and Find Full Text PDFAdiponectin, the most abundant adipokine released by adipose tissue, appears to play an important role in the regulation of vascular endothelial and cardiac function. To date, however, the physiological effects of human monomeric adiponectin on the coronary vasculature and myocardial systo-diastolic function, as well as on parasympathetic/sympathetic involvement and nitric oxide (NO) release, have not yet been investigated. Thus, we planned to determine the primary in vivo effects of human monomeric adiponectin on coronary blood flow and cardiac contractility/relaxation and the related role of autonomic nervous system, adiponectin receptors, and NO.
View Article and Find Full Text PDFAs in other organs, oxidative stress-induced injury and cell death may result from free oxygen radical-dependent mechanisms and alterations in signal transduction pathways leading to apoptosis. Among the new suggested therapies for injuries caused by oxidative stress, the use of levosimendan has been reported to be quite promising. In the present study, we aimed to examine the protective effects of levosimendan against liver oxidative stress in anesthetized rats and to analyze the involvement of mitochondrial adenosine triphosphate-dependent potassium (mitoK(ATP)) channels and nitric oxide (NO).
View Article and Find Full Text PDF