Effective modeling of human interactions is of utmost importance when forecasting behaviors such as future trajectories. Each individual, with its motion, influences surrounding agents since everyone obeys to social non-written rules such as collision avoidance or group following. In this paper we model such interactions, which constantly evolve through time, by looking at the problem from an algorithmic point of view, i.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
June 2023
Pedestrians and drivers are expected to safely navigate complex urban environments along with several non cooperating agents. Autonomous vehicles will soon replicate this capability. Each agent acquires a representation of the world from an egocentric perspective and must make decisions ensuring safety for itself and others.
View Article and Find Full Text PDFObject detection is one of the most important tasks of computer vision. It is usually performed by evaluating a subset of the possible locations of an image, that are more likely to contain the object of interest. Exhaustive approaches have now been superseded by object proposal methods.
View Article and Find Full Text PDFIn this paper, we present a novel method to improve the flexibility of descriptor matching for image recognition by using local multiresolution pyramids in feature space. We propose that image patches be represented at multiple levels of descriptor detail and that these levels be defined in terms of local spatial pooling resolution. Preserving multiple levels of detail in local descriptors is a way of hedging one's bets on which levels will most relevant for matching during learning and recognition.
View Article and Find Full Text PDF