Quantitative converse piezoelectric coefficient () mapping of polymer ultrafine fibers of poly(acrylonitrile) (PAN), as well as of poly(vinylidene fluoride) (PVDF) as a reference material, obtained by rotating electrospinning, was carried out by piezoresponse force microscopy in the constant-excitation frequency-modulation mode (CE-FM-PFM). PFM mapping of single fibers reveals their piezoelectric activity and provides information on its distribution along the fiber length. Uniform behavior is typically observed on a length scale of a few micrometers.
View Article and Find Full Text PDFDecoherence or dephasing of the exciton is a central characteristic of a quantum dot (QD) that determines the minimum width of the exciton emission line and the purity of indistinguishable photon emission during exciton recombination. Here, we analyze exciton dephasing in colloidal InP/ZnSe QDs using transient four-wave mixing spectroscopy. We obtain a dephasing time of 23 ps at a temperature of 5 K, which agrees with the smallest line width of 50 μeV we measure for the exciton emission of single InP/ZnSe QDs at 5 K.
View Article and Find Full Text PDFThe fine structure of exciton states in colloidal quantum dots (QDs) results from the compound effect of anisotropy and electron-hole exchange. By means of single-dot photoluminescence spectroscopy, we show that the emission of photoexcited InP/ZnSe QDs originates from radiative recombination of such fine structure exciton states. Depending on the excitation power, we identify a bright exciton doublet, a trion singlet, and a biexciton doublet line that all show pronounced polarization.
View Article and Find Full Text PDFWe measure the coherent nonlinear response of excitons in a single layer of molybdenum disulfide embedded in hexagonal boron nitride, forming a h-BN/MoS/ h-BN heterostructure. Using four-wave mixing microscopy and imaging, we correlate the exciton inhomogeneous broadening with the homogeneous one and population lifetime. We find that the exciton dynamics is governed by microscopic disorder on top of the ideal crystal properties.
View Article and Find Full Text PDFFully inorganic cesium lead halide perovskite nanocrystals (NCs) have shown to exhibit outstanding optical properties such as wide spectral tunability, high quantum yield, high oscillator strength as well as blinking-free single photon emission, and low spectral diffusion. Here, we report measurements of the coherent and incoherent exciton dynamics on the 100 fs to 10 ns time scale, determining dephasing and density decay rates in these NCs. The experiments are performed on CsPbBrCl NCs using transient resonant three-pulse four-wave mixing (FWM) in heterodyne detection at temperatures ranging from 5 to 50 K.
View Article and Find Full Text PDF