We study the origin of bimodal emission in AlGaN/AlN QD superlattices displaying a high internal quantum efficiency (around 50%) in the 230-300 nm spectral range. The secondary emission at longer wavelengths is linked to the presence of cone-like domains with deformed QD layers, which originate at the first AlN buffer/superlattice interface and propagate vertically. The cones originate at a 30°-faceted shallow pit in the AlN, which appears to be associated with a threading dislocation that produces strong shear strain.
View Article and Find Full Text PDFWe investigate the microscopic behaviour of hydrogen-containing species formed on the surface of III-N semiconductor samples by the residual hydrogen in the analysis chamber in laser-assisted atom probe tomography (APT). We analysed AlGaN/GaN heterostructures containing alternate layers with a thickness of about 20 nm. The formation of H-containing species occurs at field strengths between 22 and 26 V/nm and is independent of the analysed samples.
View Article and Find Full Text PDFBy collecting simultaneously optical and chemical/morphological data from nanoscale volumes, the Photonic Atom Probe (PAP) can be applied not only to the study of the relationship between optical and structural properties of quantum emitter but also to evaluate the influence of other factors, such as the presence of point defects, on the photoluminescence. Through the analysis of multiple layers of InGaN/GaN quantum dots (QDs), grown so that the density of structural defects is higher with increasing distance from the substrate, we establish that the light emission is higher in the regions exhibiting a higher presence of structural defects. While the presence of intrinsic point defects with non-radiative recombination properties remains elusive, our result is consistent with the fact that QD layers closer to the substrate behave as traps for non-radiative point defects.
View Article and Find Full Text PDFThe measurement of the composition of ε-Ga2O3 and the quantification of Sn doping in ε-Ga2O3:Sn by laser-assisted atom probe tomography (APT) may be inaccurate depending on the experimental conditions. Both the role of the laser energy and surface electric field were investigated, and the results clearly indicate that deviations from stoichiometry are observed changing the electric field conditions during APT. The measured atomic fraction of Ga can change from 0.
View Article and Find Full Text PDFAttaining low-resistivity AlGaN layers is one keystone to improve the efficiency of light-emitting devices in the ultraviolet spectral range. Here, we present a microstructural analysis of AlGaN/Ge samples with 0 ≤ ≤ 1, and a nominal doping level in the range of 10 cm, together with the measurement of Ge concentration and its spatial distribution down to the nanometer scale. AlGaN/Ge samples with ≤ 0.
View Article and Find Full Text PDFAtom Probe Tomography (APT) is a microscopy technique allowing for the 3D reconstruction of the chemical composition of a nanoscale needle-shaped sample with a precision close to the atomic scale. The photonic atom probe (PAP) is an evolution of APT featuring in situ and operando detection of the photoluminescence signal. The optical signatures of the light-emitting centers can be correlated with the structural and chemical information obtained by the analysis of the evaporated ions.
View Article and Find Full Text PDFThe composition of GaAs measured by laser-assisted atom probe tomography may be inaccurate depending on the experimental conditions. In this work, we assess the role of the DC field and the impinging laser energy on such compositional bias. The DC field is found to have a major influence, while the laser energy has a weaker one within the range of parameters explored.
View Article and Find Full Text PDFThe localization of carrier states in GaN/AlN self-assembled quantum dots (QDs) is studied by correlative multimicroscopy relying on microphotoluminescence, electron tomography, and atom probe tomography (APT). Optically active field emission tip specimens were prepared by focused ion beam from an epitaxial film containing a stack of quantum dot layers and analyzed with different techniques applied subsequently on the same tip. The transition energies of single QDs were calculated in the framework of a 6-bands k.
View Article and Find Full Text PDFIn an atom probe, molecular ions can be field evaporated from the analyzed material and, then, can dissociate under the very intense electric field close to the field emitter. In this work, field evaporation of ZnO reveals the emission of Zn2O2(2+) ions and their dissociation into ZnO(+) ions. It is shown that the repulsion between the produced ZnO(+) ions is large enough to have a measurable effect on both the ion trajectories and times of flight.
View Article and Find Full Text PDFA single nanoscale object containing a set of InGaN/GaN nonpolar multiple-quantum wells has been analyzed by microphotoluminescence spectroscopy (μPL), high-resolution scanning transmission electron microscopy (HR-STEM) and atom probe tomography (APT). The correlated measurements constitute a rich and coherent set of data supporting the interpretation that the observed μPL narrow emission lines, polarized perpendicularly to the crystal c-axis and with energies in the interval 2.9-3.
View Article and Find Full Text PDFSilicon nanowires (SiNWs) grown on low-cost substrates provide an ideal framework for the monolithic fabrication of radial junction photovoltaics. However, the quality of junction formation over a random matrix of SiNWs, fabricated via a vapor-liquid-solid (VLS) mechanism, has never been assessed in a realistic context. To address this, we probe the current response of individual radial junction solar cells under electron-beam and optical-beam excitations.
View Article and Find Full Text PDFThe development of laser-assisted atom probes makes it possible, in principle, to exploit the femtosecond laser pulse not only for triggering ion evaporation from a nanometric field emission tip, but also for generating photons via the radiative recombination of electron-hole pairs in tips made of dielectric materials. In this article we demonstrate a first step towards a correlation of micro-photoluminescence (μ-PL) and laser-assisted tomographic atom probe (LA-TAP) analysis applied separately on the same objects, namely on ZnO microwires. In particular, we assess that the use of the focused ion beam (FIB) tip preparation method significantly degrades the radiative recombination yield of the analyzed microwires.
View Article and Find Full Text PDFWe present a novel approach for self-assembled growth of GaN quantum wires (QWRs) exhibiting strong confinement in two spatial dimensions. The GaN QWRs are formed by selective nucleation on {112[combining macron]0} (a-plane) facets formed at the six intersections of {11[combining macron]00} (m-plane) sidewalls of AlN/GaN nanowires used as a template. Based on microscopy observations we have developed a 3D model explaining the growth mechanism of QWRs.
View Article and Find Full Text PDFGallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated.
View Article and Find Full Text PDFNonpolar InGaN/GaN multiple quantum wells (MQWs) grown on the {11-00} sidewalls of c-axis GaN wires have been grown by organometallic vapor phase epitaxy on c-sapphire substrates. The structural properties of single wires are studied in detail by scanning transmission electron microscopy and in a more original way by secondary ion mass spectroscopy to quantify defects, thickness (1-8 nm) and In-composition in the wells (∼16%). The core-shell MQW light emission characteristics (390-420 nm at 5 K) were investigated by cathodo- and photoluminescence demonstrating the absence of the quantum Stark effect as expected due to the nonpolar orientation.
View Article and Find Full Text PDFWe investigated the polarization dependence of the near-band-edge photoluminescence in ZnO strain-free nanowires grown by vapor phase technique. The emission is polarized perpendicular to the nanowire axis with a large polarization ratio (as high as 0.84 at 4.
View Article and Find Full Text PDFWe report the spectral imaging in the UV to visible range with nanometer scale resolution of closely packed GaN/AlN quantum disks in individual nanowires using an improved custom-made cathodoluminescence system. We demonstrate the possibility to measure full spectral features of individual quantum emitters as small as 1 nm and separated from each other by only a few nanometers and the ability to correlate their optical properties to their size, measured with atomic resolution. The direct correlation between the quantum disk size and emission wavelength provides evidence of the quantum confined Stark effect leading to an emission below the bulk GaN band gap for disks thicker than 2.
View Article and Find Full Text PDFWe report the investigation of electronic transport in GaN nanowires containing GaN/AlN quantum discs (QDiscs). The nanowires were grown by plasma-assisted molecular beam epitaxy and contacted by electron-beam lithography. Three nanowire samples containing QDiscs are analyzed and compared to a reference binary n-i-n GaN nanowire sample.
View Article and Find Full Text PDFWe report the synthesis, fabrication and extensive characterization of a visible-blind photodetector based on p-i-n junction GaN nanowire ensembles. The nanowires were grown by plasma-assisted molecular beam epitaxy on an n-doped Si(111) substrate, encapsulated into a spin-on-glass and processed using dry etching and metallization techniques. The detector presents a high peak responsivity of 0.
View Article and Find Full Text PDF