Inductive proximity sensors are relevant in position-sensing applications in many industries but, in order to be used in harsh industrial environments, they need to be immune to electromagnetic interference (EMI). The use of conventional filters to mitigate these perturbations often compromises signal bandwidth, ranging from 100 Hz to 1.6 kHz.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
A Customized wound patch for Advanced tissue Regeneration with Electric field (CARE), featuring an autonomous robot arm printing system guided by a computer vision-enabled guidance system for fast image recognition is introduced. CARE addresses the growing demand for flexible, stretchable, and wireless adhesive bioelectronics tailored for electrotherapy, which is suitable for rapid adaptation to individual patients and practical implementation in a comfortable design. The visual guidance system integrating a 6-axis robot arm enables scans from multiple angles to provide a 3D map of complex and curved wounds.
View Article and Find Full Text PDFBiological motions of native muscle tissues rely on the nervous system to interface movement with the surrounding environment. The neural innervation of muscles, crucial for regulating movement, is the fundamental infrastructure for swiftly responding to changes in body tissue requirements. This study introduces a bioelectronic neuromuscular robot integrated with the motor nervous system through electrical synapses to evoke cardiac muscle activities and steer robotic motion.
View Article and Find Full Text PDFThe integration of flexible and stretchable electronics into biohybrid soft robotics can spur the development of new approaches to fabricate biohybrid soft machines, thus enabling a wide variety of innovative applications. Inspired by flexible and stretchable wireless-based bioelectronic devices, we have developed untethered biohybrid soft robots that can execute swimming motions, which are remotely controllable by the wireless transmission of electrical power into a cell simulator. To this end, wirelessly-powered, stretchable, and lightweight cell stimulators were designed to be integrated into muscle bodies without impeding the robots' underwater swimming abilities.
View Article and Find Full Text PDFTo create life-like movements, living muscle actuator technologies have borrowed inspiration from biomimetic concepts in developing bioinspired robots. Here, the development of a bioinspired soft robotics system, with integrated self-actuating cardiac muscles on a hierarchically structured scaffold with flexible gold microelectrodes is reported. Inspired by the movement of living organisms, a batoid-fish-shaped substrate is designed and reported, which is composed of two micropatterned hydrogel layers.
View Article and Find Full Text PDF