Publications by authors named "Lorenzo Pareschi"

The temporal evolution of a contagious viral disease is modelled as the dynamic progression of different classes of population with individuals interacting pairwise. This interaction follows a binary mechanism typical of kinetic theory, wherein agents aim to improve their condition with respect to a mutual utility target. To this end, we introduce kinetic equations of Boltzmann-type to describe the time evolution of the probability distributions of the multi-agent system.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic reminded us how vaccination can be a divisive topic on which the public conversation is permeated by misleading claims, and thoughts tend to polarize, especially on online social networks. In this work, motivated by recent natural language processing techniques to systematically extract and quantify opinions from text messages, we present a differential framework for bivariate opinion formation dynamics that is coupled with a compartmental model for fake news dissemination. Thanks to a mean-field analysis we demonstrate that the resulting Fokker-Planck system permits to reproduce bimodal distributions of opinions as observed in polarization dynamics.

View Article and Find Full Text PDF

The rise of social networks as the primary means of communication in almost every country in the world has simultaneously triggered an increase in the amount of fake news circulating online. The urgent need for models that can describe the growing infodemic of fake news has been highlighted by the current pandemic. The resulting slowdown in vaccination campaigns due to misinformation and generally the inability of individuals to discern the reliability of information is posing enormous risks to the governments of many countries.

View Article and Find Full Text PDF

The spread of the COVID-19 pandemic has highlighted the close link between economics and health in the context of emergency management. A widespread vaccination campaign is considered the main tool to contain the economic consequences. This paper will focus, at the level of wealth distribution modeling, on the economic improvements induced by the vaccination campaign in terms of its effectiveness rate.

View Article and Find Full Text PDF

After the introduction of drastic containment measures aimed at stopping the epidemic contagion from SARS-CoV2, many governments have adopted a strategy based on a periodic relaxation of such measures in the face of a severe economic crisis caused by lockdowns. Assessing the impact of such openings in relation to the risk of a resumption of the spread of the disease is an extremely difficult problem due to the many unknowns concerning the actual number of people infected, the actual reproduction number and infection fatality rate of the disease. In this work, starting from a SEIRD compartmental model with a social structure based on the age of individuals and stochastic inputs that account for data uncertainty, the effects of containment measures are introduced via an optimal control problem dependent on specific social activities, such as home, work, school, etc.

View Article and Find Full Text PDF

In this paper we introduce a space-dependent multiscale model to describe the spatial spread of an infectious disease under uncertain data with particular interest in simulating the onset of the COVID-19 epidemic in Italy. While virus transmission is ruled by a SEIAR type compartmental model, within our approach the population is given by a sum of commuters moving on a extra-urban scale and non commuters interacting only on the smaller urban scale. A transport dynamics of the commuter population at large spatial scales, based on kinetic equations, is coupled with a diffusion model for non commuters at the urban scale.

View Article and Find Full Text PDF

The adoption of containment measures to reduce the amplitude of the epidemic peak is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental models must be modified and studied to correctly describe the effects of forced external actions to reduce the impact of the disease. The importance of social structure, such as the age dependence that proved essential in the recent COVID-19 pandemic, must be considered, and in addition, the available data are often incomplete and heterogeneous, so a high degree of uncertainty must be incorporated into the model from the beginning.

View Article and Find Full Text PDF

We develop a mathematical framework to study the economic impact of infectious diseases by integrating epidemiological dynamics with a kinetic model of wealth exchange. The multiagent description leads to the study of the evolution over time of a system of kinetic equations for the wealth densities of susceptible, infectious, and recovered individuals, whose proportions are driven by a classical compartmental model in epidemiology. Explicit calculations show that the spread of the disease seriously affects the distribution of wealth, which, unlike the situation in the absence of epidemics, can converge toward a stationary state with a bimodal form.

View Article and Find Full Text PDF

The Luria-Delbrück mutation model has a long history and has been mathematically formulated in several different ways. Here we tackle the problem in the case of a continuous distribution using some mathematical tools from nonlinear statistical physics. Starting from the classical formulations we derive the corresponding differential models and show that under a suitable mean field scaling they correspond to generalized Fokker-Planck equations for the mutants distribution whose solutions are given by the corresponding Luria-Delbrück distribution.

View Article and Find Full Text PDF