Compound flooding arises from storms causing concurrent extreme meteorological tides (that is the superposition of storm surge and waves) and precipitation. This flooding can severely affect densely populated low-lying coastal areas. Here, combining output from climate and ocean models, we analyse the concurrence probability of the meteorological conditions driving compound flooding.
View Article and Find Full Text PDFExtreme sea levels (ESLs) in Europe could rise by as much as one metre or more by the end of this century due to climate change. This poses significant challenges to safeguard coastal communities. Here we present a comprehensive analysis of economically efficient protection scenarios along Europe's coastlines during the present century.
View Article and Find Full Text PDFThis dataset, produced through the Coordinated Ocean Wave Climate Project (COWCLIP) phase 2, represents the first coordinated multivariate ensemble of 21 Century global wind-wave climate projections available (henceforth COWCLIP2.0). COWCLIP2.
View Article and Find Full Text PDFChanges in coastal morphology have broad consequences for the sustainability of coastal communities, structures and ecosystems. Although coasts are monitored locally in many places, understanding long-term changes at a global scale remains a challenge. Here we present a global and consistent evaluation of coastal morphodynamics over 32 years (1984-2015) based on satellite observations.
View Article and Find Full Text PDFGlobal warming is expected to drive increasing extreme sea levels (ESLs) and flood risk along the world's coastlines. In this work we present probabilistic projections of ESLs for the present century taking into consideration changes in mean sea level, tides, wind-waves, and storm surges. Between the year 2000 and 2100 we project a very likely increase of the global average 100-year ESL of 34-76 cm under a moderate-emission-mitigation-policy scenario and of 58-172 cm under a business as usual scenario.
View Article and Find Full Text PDF