Publications by authors named "Lorenzo Mastronardi"

The integration of fast and power efficient electro-absorption modulators on silicon is of utmost importance for a wide range of applications. To date, Franz-Keldysh modulators formed of bulk Ge or GeSi have been widely adopted due to the simplicity of integration required by the modulation scheme. Nevertheless, to obtain operation for a wider range of wavelengths (O to C band) a thick stack of Ge/GeSi layers forming quantum wells is required, leading to a dramatic increase in the complexity linked to sub-micron waveguide coupling.

View Article and Find Full Text PDF

Increasing the working optical bandwidth of a photonic circuit is important for many applications, in particular chemical sensing at mid-infrared wavelengths. This useful bandwidth is not only limited by the transparency range of waveguide materials, but also the range over which a waveguide is single or multimoded for predictable circuit behaviour. In this work, we show the first experimental demonstration of "endlessly single-mode" waveguiding in silicon photonics.

View Article and Find Full Text PDF

In this paper we theoretically investigate a ring resonant cavity obtained by closing on itself a π-shifted fiber Bragg grating, to be used for refractive index sensing applications. Differently from a conventional π-shifted fiber Bragg grating, the spectral structure of this cavity is characterized by an asymmetric splitting doublet composed by a right side resonance having an asymmetric Fano profile and a left side resonance having a symmetric Lorentzian profile. The right side resonance shows a narrower and sharper peak than all the other kinds of resonance achievable with both conventional ring resonators and π-shifted fiber Bragg gratings.

View Article and Find Full Text PDF

In this paper, we report on theoretical investigation of split mode resonant sensors based on fiber Bragg grating (FBG) ring resonators and π-shifted fiber Bragg grating (π-FBG) ring resonators. By using a π-shifted Bragg grating ring resonator (π-FBGRR) instead of a conventional fiber Bragg grating ring resonator (FBGRR), the symmetric and antisymmetric resonance branches (i.e.

View Article and Find Full Text PDF