Identifying diseases from images of plant leaves is one of the most important research areas in precision agriculture. The aim of this paper is to propose an image detector embedding a resource constrained convolutional neural network (CNN) implemented in a low cost, low power platform, named OpenMV Cam H7 Plus, to perform a real-time classification of plant disease. The CNN network so obtained has been trained on two specific datasets for plant diseases detection, the ESCA-dataset and the PlantVillage-augmented dataset, and implemented in a low-power, low-cost Python programmable machine vision camera for real-time image acquisition and classification, equipped with a LCD display showing to the user the classification response in real-time.
View Article and Find Full Text PDFWearable devices offer a convenient means to monitor biosignals in real time at relatively low cost, and provide continuous monitoring without causing any discomfort. Among signals that contain critical information about human body status, electromyography (EMG) signal is particular useful in monitoring muscle functionality and activity during sport, fitness, or daily life. In particular surface electromyography (sEMG) has proven to be a suitable technique in several health monitoring applications, thanks to its non-invasiveness and ease to use.
View Article and Find Full Text PDF