Publications by authors named "Lorenzo Leoni"

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal disease caused by lowered activity of the enzyme alpha-L-iduronidase (IDUA). Current therapeutic options show limited efficacy and do not treat some important aspects of the disease. Therefore, it may be advantageous to identify strategies that could improve the efficacy of existing treatments.

View Article and Find Full Text PDF

We designed and tested a new rollable and implantable medical device to directly and continuously measure intraocular pressure. Since high intraocular pressure is a leading risk factor for glaucoma, such a system could solve the difficulties encountered in the management of this condition. In fact, glaucoma is one among those pathologies that could most benefit of an adaptive patient-specific medicine device.

View Article and Find Full Text PDF

Bendamustine is a chemotherapeutic agent that displays a unique pattern of cytotoxicity compared with conventional alkylating agents. Bendamustine was originally synthesized in the former East German Democratic Republic in the 1960s. It was designed to have both alkylating and antimetabolite properties.

View Article and Find Full Text PDF

Although the alkylating agent bendamustine was developed in Germany in the mid-twentieth century, it has only recently come to the forefront in the rest of the world as an effective chemotherapeutic agent for the treatment of several hematologic malignancies. Based on the activity demonstrated in single-arm and randomized trials, this nitrogen mustard is approved by the US Food and Drug Administration (FDA) for the treatment of chronic lymphocytic leukemia and rituximab-refractory indolent non-Hodgkin lymphoma. The unique structural and mechanistic features of bendamustine differentiate it from other alkylating agents, providing increased stability and potency in DNA cross linking and subsequent cytotoxicity.

View Article and Find Full Text PDF

Bendamustine is a bifunctional mechlorethamine derivative that shares similarities to other alkylators; however, the presence of a benzimidazole ring may confer "nucleoside-like" properties and may allow the stabilization of the molecule leading to longer lasting DNA damage. Though bendamustine has demonstrated promising response rates in preclinical and clinical studies, particularly in follicular lymphoma, chronic lymphocytic leukemia, diffuse B-cell lymphoma, and mantle cell lymphoma, the unique and exact mechanism of action of this agent remains unclear. Several studies have been initiated to address this question, and it is hoped that emerging data will provide the basis for more effective utilization of this interesting drug.

View Article and Find Full Text PDF

Bendamustine has demonstrated substantial efficacy in the treatment of hematologic malignancies and continues to distinguish itself from other alkylating agents with regard to its activity in tumor cells. The mechanistic and clinical differences associated with bendamustine may be directly related to its unique structural features. Although the precise mechanisms of action are still poorly understood, bendamustine is associated with extensive and durable DNA damage.

View Article and Find Full Text PDF

Objective: • To study the pharmacokinetic and toxicity profile of intravesically administered TMX-101, with its active ingredient R-837, a synthetic Toll-like receptor (TLR)-7 agonist, in a pig model.

Materials And Methods: • TLR-7 expression was determined by immunohistochemistry in human and pig bladder tissue. • Four groups of six pigs received a 1-h intravesical instillation with R-837 of different formulations.

View Article and Find Full Text PDF

Objective: To study the immune response caused by the intravesical administration of the immunomodulator R-837 in various formulations and to estimate its therapeutic potential for bladder cancer.

Methods: Female C57BL/6 mice were intravesically treated with different formulations of R-837, a Toll-like receptor 7 agonist used for treating genital warts and skin malignancy. The tested formulation mixtures contained different ratios of lactic acid, a thermosensitive poloxamer polymer (Lutrol F127) and 2-(hydroxypropyl)-beta-cyclodextrin (HPbetaCD).

View Article and Find Full Text PDF

Purpose: Bendamustine has shown clinical activity in patients with disease refractory to conventional alkylator chemotherapy. The purpose of this study was to characterize the mechanisms of action of bendamustine and to compare it with structurally related compounds.

Experimental Design: Bendamustine was profiled in the National Cancer Institute in vitro antitumor screen.

View Article and Find Full Text PDF

SDX-308 and SDX-309 are potent indole-pyran analogues of SDX-101 (R-etodolac) which has anti-tumour activity unrelated to cyclooxygenase-2 inhibition. Their cytotoxic activity was further studied herein using a well-characterized human tumour cell-line panel containing ten cell lines, as well as in 58 primary tumour cell samples from a variety of diagnoses. The indole-pyran analogues of SDX-101 were in general considerably more active in both cancer cell lines and primary tumour samples.

View Article and Find Full Text PDF

Background/aims: Inhibition of hepatoma cells by cyclooxygenase (COX)-2-dependent and -independent mechanisms has been shown previously. Here, we examine the effect of Celecoxib, a COX-2-inhibitor and R-Etodolac, an enantiomer of the nonsteroidal anti-inflammatory drug Etodolac, which lacks COX-inhibitory activity, on the Wnt/beta-catenin pathway and human hepatoma cells.

Methods: Hep3B and HepG2 cell lines were treated with Celecoxib or R-Etodolac, and examined for viability, DNA synthesis, Wnt/beta-catenin pathway components, and downstream target gene expression.

View Article and Find Full Text PDF

Objective: SDX-101 is the non-cyclooxygenase 2-inhibiting R-enantiomer of the non-steroid anti-inflammatory drug etodolac, and has anti-tumour activity in chronic lymphocytic leukaemia (CLL). SDX-308 and SDX-309 are more potent, structurally related indole-pyran analogues of SDX-101. The current study was performed to investigate and quantify the cytotoxic potentiating effects resulting from a combination of either SDX-101, SDX-308 or SDX-309 with standard cytotoxic agents used in the CLL treatment today.

View Article and Find Full Text PDF

Multiple myeloma is characterized by increased osteoclast activity that results in bone destruction and lytic lesions. With the prolonged overall patient survival achieved by new treatment modalities, additional drugs are required to inhibit bone destruction. We focused on a novel and more potent structural analog of the nonsteroidal anti-inflammatory drug etodolac, known as SDX-308, and its effects on osteoclastogenesis and multiple myeloma cells.

View Article and Find Full Text PDF

Purpose: To determine the methylthioadenosine phosphorylase (MTAP) gene alterations in mantle cell lymphoma (MCL) and to investigate whether the targeted inactivation of the alternative de novo AMP synthesis pathway may be a useful therapeutic strategy in tumors with inactivation of this enzyme.

Experimental Design: MTAP gene deletion and protein expression were studied in 64 and 52 primary MCL, respectively, and the results were correlated with clinical behavior. Five MCL cell lines were analyzed for MTAP expression and for the in vitro sensitivity to L-alanosine, an inhibitor of adenylosuccinate synthetase, and hence de novo AMP synthesis.

View Article and Find Full Text PDF

The p16(INK4A)/CDKN2A gene on chromosome 9p21 is a site of frequent allelic loss in human cancers, and in a subset of cases, homozygous deletions at this locus encompass the telomeric methylthioadenosine phosphorylase (MTAP) gene. The MTAP gene product is the principal enzyme involved in purine synthesis via the salvage pathway, such that MTAP-negative cancers are solely dependent on de novo purine synthesis mechanisms. Inhibitors of the de novo pathway can then be used to selectively blockade purine synthesis in cancer cells while causing minimal collateral damage to normal cells.

View Article and Find Full Text PDF

The gene that encodes methylthioadenosine phosphorylase (MTAP), an enzyme involved in adenine and methionine salvage pathways, is located on chromosome 9p21 telomeric to the p16INK4A/CDKN2A tumor suppressor gene. Inactivation of the p16INK4A/CDKN2A gene occurs by three different mechanisms: hypermethylation of the gene promoter, intragenic mutation coupled with loss of the second allele, and homozygous deletion. Immunohistochemical labeling for the p16INK4A/CDKN2A gene product parallels gene status but does not elucidate the mechanism of gene inactivation.

View Article and Find Full Text PDF

The p16INK4A/CDKN2A (p16) gene on chromosome 9p21 is inactivated in >90% of invasive pancreatic cancers. In 40% of pancreatic cancers the p16 gene is inactivated by homozygous deletion, in 40% by an intragenic mutation coupled with loss of the second allele, and in 10-15% by hypermethylation of the p16 gene promoter. Immunohistochemical labeling for the p16 gene product parallels gene status, but does not provide information of the mechanism of p16 gene inactivation.

View Article and Find Full Text PDF

In this study we report that R-etodolac (SDX-101), at clinically relevant concentrations, induces potent cytotoxicity in drug-sensitive multiple myeloma (MM) cell lines, as well as in dexamethasone (MM.1R)-, doxorubicin (Dox40/RPMI8226)-, and bortezomib (DHL4)-resistant cell lines. Immunoblot analysis demonstrates that R-etodolac induces apoptosis characterized by caspase-8, -9, and -3 and PARP (poly-ADP [adenosine diphosphate]-ribose polymerase) cleavage and down-regulation of cyclin D1 expression.

View Article and Find Full Text PDF

Myeloid cell leukemia-1 (MCL-1) acts as a key survival factor for chronic lymphocytic leukemia (CLL) cells. In addition, dissipation of cellular bioenergy may impose a lethal effect on these quiescent cells. Previously, in multiple myeloma cell lines we demonstrated that halogenated adenosine (8-Cl-Ado) was phosphorylated to triphosphate (8-Cl-adenosine triphosphate [ATP]), which preferentially incorporated into mRNA and inhibited RNA synthesis by premature transcription termination.

View Article and Find Full Text PDF

Prostate cancer is often slowly progressive, and it can be difficult to treat with conventional cytotoxic drugs. Nonsteroidal antiinflammatory drugs inhibit the development of prostate cancer, but the mechanism of chemoprevention is unknown. Here, we show that the R-enantiomer of the nonsteroidal antiinflammatory drug etodolac inhibited tumor development and metastasis in the transgenic mouse adenocarcinoma of the prostate (TRAMP) model, by selective induction of apoptosis in the tumor cells.

View Article and Find Full Text PDF

Methylthioadenosine phosphorylase (MTAP) plays an important role in the salvage pathway for the synthesis of adenosine. Novel chemotherapeutic strategies exploiting the selective loss of MTAP function in cancers have been proposed. The MTAP gene, on chromosome 9p21, is frequently included within homozygous deletions of the p16INK4A/ CDKN2A gene.

View Article and Find Full Text PDF

R-etodolac, a nonsteroidal anti-inflammatory drug, inhibits the progression of CWRSA6 androgen-independent and LuCaP-35 androgen-dependent prostate cancer xenograft growth through downregulation of cyclin D1 expression via the PPARgamma pathway. PPARgamma protein degradation, observed post-R-etodolac treatment, resulted from phospho-MAP kinase (p44/42) induction by R-etodolac negatively regulating PPARgamma function. Negative regulation of PPARgamma was overcome by a combination regimen of R-etodolac with the HER-kinase axis inhibitor, rhuMab 2C4, which demonstrated an additive antitumor effect.

View Article and Find Full Text PDF