Background: Childhood dyskinesia (CD) is a complex movement disorder with components of dystonic and hyperkinetic nature, characterized by involuntary, sometimes stereotypical postures and gestures that are often impossible to control and hinder the execution of willful motion. The standard orthoses for the treatment of neurological diseases, including CD, are generally poorly differentiated for functional characteristics. The application of similar devices for movement disorders is far less generalized because of the very different symptoms, including the incapacity to control rather than initiate movement.
View Article and Find Full Text PDFPurpose: The chronic sequelae of stroke are often a strong limitation to patient's quality of life. New non-invasive elective treatments are required to support postural and functional improvements long after the primary insult. This study is an uncontrolled pilot evaluation of pseudoelastic orthotics for post-stroke upper-limb rehabilitation.
View Article and Find Full Text PDFBackground: Movement Disorders (MD) are a class of disease that impair the daily activities of patients, conditioning their sensorimotor, cognitive and behavioural capabilities. Nowadays, the general management of patients with MD is based on rehabilitation, pharmacological treatments, surgery, and traditional splints. Although some attempts have been made to devise specific orthoses for the rehabilitation of patients affected by MD, especially the younger ones, those devices have received limited attention.
View Article and Find Full Text PDFThe study proposes a new treatment for dystonia based on a dynamic wearable orthosis equipped with metallic materials of non-linear mechanical characteristics. Two boys with upper-limb dystonia were enrolled, as well as six healthy children. Fully-customised devices were made for the patients.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Upper motoreuron lesions (UML) affects people of all ages and conditions and is a major cause of disability in the young. Whereas active exercise is recognised as paramount to restore the lost motor functions, passive mobilisation of the affected limbs is regarded as a means to safeguard muscular tissue properties during a period of disuse and lack of voluntary control, which often characterises the acute and sub-acute phases. The purpose of the present work is to study the cortical reactivity in UML patients who are treated for two weeks with a robotic passive ankle mobiliser, and the clinical effects of this treatment.
View Article and Find Full Text PDFShape memory alloys (SMAs) are a very promising class of metallic materials that display interesting nonlinear properties, such as pseudoelasticity (PE), shape memory effect (SME) and damping capacity, due to high mechanical hysteresis and internal friction. Our group has applied SMA in the field of neuromuscular rehabilitation, designing some new devices based on the mentioned SMA properties: in particular, a new type of orthosis for spastic limb repositioning, which allows residual voluntary movement of the impaired limb and has no predetermined final target position, but follows and supports muscular elongation in a dynamic and compliant way. Considering patients in the sub-acute phase after a neurological lesion, and possibly bedridden, the paper presents a mobiliser for the ankle joint, which is designed exploiting the SME to provide passive exercise to the paretic lower limb.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Gait impairment is an important consequence of neurological disease. Passive mobilization of the affected lower limbs is often prescribed in order to safeguard tissue properties and prevent circulatory sequelae during paresis. However, passive movement could play a role also in stimulating cortical areas of the brain devoted to the control of the lower limb, so that deafferentation and learned non-use can be contrasted.
View Article and Find Full Text PDFLower limb rehabilitation is a fundamental part of post-acute care in neurological disease. Early commencement of active workout is often prevented by paresis, thus physical treatment may be delayed until patients regain some voluntary command of their muscles. Passive mobilization of the affected joints is mostly delivered in order to safeguard tissue properties and shun circulatory problems.
View Article and Find Full Text PDF