In this paper we present CHARLES (C++ pHotonic Aware neuRaL nEtworkS), a C++ library aimed at providing a flexible tool to simulate the behavior of Photonic-Aware Neural Network (PANN). PANNs are neural network architectures aware of the constraints due to the underlying photonic hardware, mostly in terms of low equivalent precision of the computations. For this reason, CHARLES exploits fixed-point computations for inference, while it supports both floating-point and fixed-point numerical formats for training.
View Article and Find Full Text PDF