Publications by authors named "Lorenzo Costantino"

Article Synopsis
  • Genomic DNA is organized into chromatin with the help of histones and cohesin, but their cooperation in genome regulation is not well understood.
  • Researchers identified Phf2, a histone demethylase, as a protein that interacts with cohesin, indicating a potential role in regulating transcription at active gene sites.
  • The studies show that Phf2 helps recruit cohesin to transcription start sites and affects the size of chromatin compartments, highlighting an important relationship between histone modification and genome architecture in eukaryotic cells.
View Article and Find Full Text PDF

The organization of chromatin into higher order structures is essential for chromosome segregation, the repair of DNA-damage, and the regulation of gene expression. Using Micro-C XL to detect chromosomal interactions, we observed the pervasive presence of cohesin-dependent loops with defined positions throughout the genome of budding yeast, as seen in mammalian cells. In early S phase, cohesin stably binds to cohesin associated regions (CARs) genome-wide.

View Article and Find Full Text PDF

Condensin mediates chromosome condensation, which is essential for proper chromosome segregation during mitosis. Prior to anaphase of budding yeast, the ribosomal DNA (RDN) condenses to a thin loop that is distinct from the rest of the chromosomes. We provide evidence that the establishment and maintenance of this RDN condensation requires the regulation of condensin by Cdc5p (polo) kinase.

View Article and Find Full Text PDF

DNA-RNA hybrids associated with R-loops promote DNA damage and genomic instability. The capacity of hybrids at different genomic sites to cause DNA damage was not known, and the mechanisms leading from hybrid to damage were poorly understood. Here, we adopt a new strategy to map and characterize the sites of hybrid-induced damage genome-wide in budding yeast.

View Article and Find Full Text PDF

R loops form when transcripts hybridize to homologous DNA on chromosomes, yielding a DNA:RNA hybrid and a displaced DNA single strand. R loops impact the genome of many organisms, regulating chromosome stability, gene expression, and DNA repair. Understanding the parameters dictating R-loop formation in vivo has been hampered by the limited quantitative and spatial resolution of current genomic strategies for mapping R loops.

View Article and Find Full Text PDF

RNA performs diverse functions in cells, directing translation, modulating transcription and catalyzing enzymatic reactions. Remarkably RNA can also anneal to its genomic template co- or post-transcriptionally to generate an RNA-DNA hybrid and a displaced single-stranded DNA. These unusual nucleic acid structures are called R-loops.

View Article and Find Full Text PDF

In budding yeast, one-ended DNA double-strand breaks (DSBs) and damaged replication forks are repaired by break-induced replication (BIR), a homologous recombination pathway that requires the Pol32 subunit of DNA polymerase delta. DNA replication stress is prevalent in cancer, but BIR has not been characterized in mammals. In a cyclin E overexpression model of DNA replication stress, POLD3, the human ortholog of POL32, was required for cell cycle progression and processive DNA synthesis.

View Article and Find Full Text PDF

The p53 tumour suppressor gene, the most frequently mutated gene in human cancer, encodes a transcription factor that contains sequence-specific DNA binding and homo-tetramerization domains. Interestingly, the affinities of p53 for specific and non-specific DNA sites differ by only one order of magnitude, making it hard to understand how this protein recognizes its specific DNA targets in vivo. We describe here the structure of a p53 polypeptide containing both the DNA binding and oligomerization domains in complex with DNA.

View Article and Find Full Text PDF

Balancing metal uptake is essential for maintaining a proper intracellular metal concentration. Here, we report the transcriptional control exerted by the two metal-responsive regulators of Helicobacter pylori, Fur (iron-dependent ferric uptake regulator) and NikR (nickel-responsive regulator), on the three copies of the fecA genes present in this species. By monitoring the patterns of transcription throughout growth and in response to nickel, iron, and a metal chelator, we found that the expression of the three fecA genes is temporally regulated, responds to metals in different ways, and is selectively controlled by either one of the two regulators.

View Article and Find Full Text PDF