To enhance the breeding of new scab-resistant apple cultivars, a comprehensive understanding of the mechanisms governing major scab resistance genes is essential. Rvi12_Cd5 was previously identified as the best candidate gene for the Rvi12 scab resistance of the crab apple "Hansen's baccata #2" by gene prediction and in silico analysis. In the present study, Rvi12_Cd5 was used to transform the scab-susceptible apple cultivar "Gala Galaxy.
View Article and Find Full Text PDFThe cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability.
View Article and Find Full Text PDFClimate change and rapid adaption of invasive pathogens pose a constant pressure on the fruit industry to develop improved varieties. Aiming to accelerate the development of better-adapted cultivars, new breeding techniques have emerged as a promising alternative to meet the demand of a growing global population. Accelerated breeding, cisgenesis, and CRISPR/Cas genome editing hold significant potential for crop trait improvement and have proven to be useful in several plant species.
View Article and Find Full Text PDFClimate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label.
View Article and Find Full Text PDFMycotoxin contamination of maize kernels by fungal pathogens like and is a chronic global challenge impacting food and feed security, health, and trade. Maize genes () synthetize oxylipins that play defense roles and govern host-fungal interactions. The current study investigated the involvement of in maize resistance against these two fungi.
View Article and Find Full Text PDFEpidermal Patterning Factor Like 9 (EPFL9), also known as STOMAGEN, is a cysteine-rich peptide that induces stomata formation in vascular plants, acting antagonistically to other epidermal patterning factors (EPF1, EPF2). In grapevine there are two genes, and sharing 82% identity at protein level in the mature functional C-terminal domain. In this study, CRISPR/Cas9 system was applied to functionally characterize in 'Sugraone', a highly transformable genotype.
View Article and Find Full Text PDFFire blight disease, caused by the bacterium Erwinia amylovora (E. amylovora), is responsible for substantial losses in cultivated apples worldwide. An important mechanism of plant immunity is based on the recognition of conserved microbial molecules, named pathogen-associated or microbe-associated molecular patterns (PAMPs or MAMPs), through pattern recognition receptors (PRRs), leading to pattern-triggered immunity (PTI).
View Article and Find Full Text PDFGenome editing via CRISPR/Cas9 is a powerful technology, which has been widely applied to improve traits in cereals, vegetables and even fruit trees. For the delivery of CRISPR/Cas9 components into dicotyledonous plants, Agrobacterium tumefaciens mediated gene transfer is still the prevalent method, although editing is often accompanied by the integration of the bacterial T-DNA into the host genome. We assessed two approaches in order to achieve T-DNA excision from the plant genome, minimizing the extent of foreign DNA left behind.
View Article and Find Full Text PDFThe bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations.
View Article and Find Full Text PDFTerpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1), the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of genotype and terpene concentration in a germplasm collection demonstrated that sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels.
View Article and Find Full Text PDFThe new plant breeding technologies (NPBTs) have recently emerged as powerful tools in the context of 'green' biotechnologies. They have wide potential compared to classical genetic engineering and they are attracting the interest of politicians, stakeholders and citizens due to the revolutionary impact they may have on agriculture. Cisgenesis and genome editing potentially allow to obtain pathogen-resistant plants or plants with enhanced qualitative traits by introducing or disrupting specific genes in shorter times compared to traditional breeding programs and by means of minimal modifications in the plant genome.
View Article and Find Full Text PDFDuring grape ripening, numerous transcriptional and metabolic changes are required in order to obtain colored, sweet, and flavored berries. There is evidence that ethylene, together with other signals, plays an important role in triggering the onset of ripening. Here, we report the functional characterization of a berry-specific Ethylene Responsive Factor (ERF), , which is induced just before véraison and peaks at ripening.
View Article and Find Full Text PDFErysiphe necator is the causal agent of powdery mildew (PM), one of the most destructive diseases of grapevine. PM is controlled by sulfur-based and synthetic fungicides, which every year are dispersed into the environment. This is why PM-resistant varieties should become a priority for sustainable grapevine and wine production.
View Article and Find Full Text PDFThe fungi Botrytis cinerea and Erysiphe necator are responsible for gray mold and powdery mildew diseases, respectively, which are among the most devastating diseases of grapes. Two endochitinase (ech42 and ech33) genes and one N-acetyl-β-D-hexosaminidase (nag70) gene from biocontrol agents related to Trichoderma spp. were used to develop a set of 103 genetically modified (GM) 'Thompson Seedless' lines (568 plants) that were established in open field in 2004 and evaluated for fungal tolerance starting in 2006.
View Article and Find Full Text PDFWe have developed an effective strategy based on real-time PCR assay for the molecular characterization of genetically modified grape and to quantify the efficiency of a marker gene removal. This research has been implemented in Vitis vinifera cv. Brachetto plantlets where exogenes were inserted during cocultures of embryogenic calli with Agrobacterium tumefaciens carrying the chemically inducible site-specific cre/loxP pX6 vector where the expression of the cre recombinase is regulated by 17-beta-estradiol.
View Article and Find Full Text PDFThe occurrence of intermixing, especially that resulting from genetically modified (GM) species, is increasingly becoming a problem in the delicate chain of feed and food quality control. Thus, a strategy is needed for precisely quantifying the presence of intermixing. An analytical assay based on real-time PCR has been developed; it can ascertain the extent of unexpected intermixing of GM soybean with maize meal.
View Article and Find Full Text PDFThe neuregulins (NRGs) are a family of signaling proteins that are ligands for receptor tyrosine kinase of the ErbB family (namely ErbB3 and ErbB4). To date, four different neuregulin genes have been identified (neuregulin1-4). While NRG1 isoforms have been extensively studied, little is yet known about the other genes of the family.
View Article and Find Full Text PDF