Publications by authors named "Lorenz von Smekal"

We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers.

View Article and Find Full Text PDF

Quantum phase estimation is one of the key algorithms in the field of quantum computing, but up until now, only approximate expressions have been derived for the probability of error. We revisit these derivations, and find that by ensuring symmetry in the error definitions, an exact formula can be found. This new approach may also have value in solving other related problems in quantum computing, where an expected error is calculated.

View Article and Find Full Text PDF

The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters.

View Article and Find Full Text PDF

We present a new high-precision method for the geometric calibration in cone-beam computed tomography. It is based on a Fourier analysis of the projection-orbit data, recorded with a flat-panel area detector, of individual point-like objects. For circular scan trajectories the complete set of misalignment parameters which determine the deviation of the detector alignment from the ideal scan geometry are obtained from explicit analytic expressions.

View Article and Find Full Text PDF

We investigate the infrared behavior of gluon and ghost propagators in Landau-gauge QCD by means of an exact renormalization group equation. We explain how, in general, the infrared momentum structure of Green functions can be extracted within this approach. An optimization procedure is devised to remove residual regulator dependences.

View Article and Find Full Text PDF