Interleukin-6 (IL-6) belongs to the cytokine family and plays a vital role in regulating immune response, bone maintenance, body temperature adjustment, and cell growth. The overexpression of IL-6 can indicate various health complications, such as anastomotic leakage, cancer, and chronic diseases. Therefore, the availability of highly sensitive and specific biosensing platforms for IL-6 detection is critical.
View Article and Find Full Text PDFEpitaxial strain plays an important role in the stabilization of ferroelectricity in doped hafnia thin films, which are emerging candidates for Si-compatible nanoscale devices. Here, we report on epitaxial ferroelectric thin films of doped HfO deposited on LaSrMnO-buffered SrTiO substrates, LaSrMnO SrTiO-buffered Si (100) wafers, and trigonal AlO substrates. The investigated films appear to consist of four domains in a rhombohedral phase for films deposited on LaSrMnO-buffered SrTiO substrates and two domains for those deposited on sapphire.
View Article and Find Full Text PDFNanoscale zinc-oxide doped with aluminum ZnO:Al is studied by different techniques targeting surface changes induced by the conditions at which ZnO:Al is used as support material in the catalysis of methanol. While it is well established that a variety of H and Al resonances can be found by solid-state NMR for this material, it was not clear yet which signals are related to species located close to the surface of the material and which to species located in the bulk. To this end, a method is suggested that makes use of a paramagnetically impregnated material to suppress NMR signals close to the particle surface in the blind sphere around the paramagnetic metal atoms.
View Article and Find Full Text PDFGroup III-nitride semiconductors have been subject of intensive research, resulting in the maturing of the material system and adoption of III-nitrides in modern optoelectronics and power electronic devices. Defined film polarity is an important aspect of III-nitride epitaxy as the polarity affects the design of electronic devices. Magnetron sputtering is a novel approach for cost-effective epitaxy of III-nitrides nearing the technological maturity needed for device production; therefore, control of film polarity is an important technological milestone.
View Article and Find Full Text PDFThis study reports the synthesis and crystal structure determination of a novel CrTe phase using various experimental and theoretical methods. The average stoichiometry and local phase separation of this quenched high-pressure phase were characterized by synchrotron powder X-ray diffraction and total scattering. Several structural models were obtained using simulated annealing, but all suffered from an imperfect Rietveld refinement, especially at higher diffraction angles.
View Article and Find Full Text PDFIn recent years, defective TiO has caught considerable research attention because of its potential to overcome the limits of low visible light absorption and fast charge recombination present in pristine TiO photocatalysts. Among the different synthesis conditions for defective TiO, ambient pressure hydrogenation with the addition of Ar as inert gas for safety purposes has been established as an easy method to realize the process. Whether the Ar gas might still influence the resulting photocatalytic properties and defective surface layer remains an open question.
View Article and Find Full Text PDFDesigning an efficient, durable, and inexpensive bifunctional electrocatalyst toward oxygen evolution reactions (OER) and oxygen reduction reactions (ORR) remains a significant challenge for the development of rechargeable zinc-air batteries (ZABs). The generation of oxygen vacancies plays a vital role in modifying the surface properties of transition-metal-oxides (TMOs) and thus optimizing their electrocatalytic performances. Herein, a H/Ar plasma is employed to generate abundant oxygen vacancies at the surfaces of NiCoO nanowires.
View Article and Find Full Text PDFConversion of light into heat is essential for a broad range of technologies such as solar thermal heating, catalysis and desalination. Three-dimensional (3D) carbon nanomaterial-based aerogels have been shown to hold great promise as photothermal transducer materials. However, until now, their light-to-heat conversion is limited by near-surface absorption, resulting in a strong heat localization only at the illuminated surface region, while most of the aerogel volume remains unused.
View Article and Find Full Text PDFAlScN is a nitride-ferroelectric compatible with both CMOS and GaN technology. The origin of ferroelectricity in these ternary nitrides relies on the full inversion of nitrogen atom positions, which is a significantly different structural mechanism than conventional perovskites. Therefore, its ferroelectric characteristics exhibit a high remanent polarization and a tunable coercive field but suffer heavily from leakage currents during the switching event.
View Article and Find Full Text PDFAnalog switching in ferroelectric devices promises neuromorphic computing with the highest energy efficiency if limited device scalability can be overcome. To contribute to a solution, one reports on the ferroelectric switching characteristics of sub-5 nm thin Al Sc N films grown on Pt/Ti/SiO /Si and epitaxial Pt/GaN/sapphire templates by sputter-deposition. In this context, the study focuses on the following major achievements compared to previously available wurtzite-type ferroelectrics: 1) Record low switching voltages down to 1 V are achieved, which is in a range that can be supplied by standard on-chip voltage sources.
View Article and Find Full Text PDFMagnetoelastic composites which use surface acoustic waves show great potential as sensors of low frequency and very low amplitude magnetic fields. While these sensors already provide adequate frequency bandwidth for most applications, their detectability has found its limitation in the low frequency noise generated by the magnetoelastic film. Amongst other contributions, this noise is closely connected to domain wall activity evoked by the strain from the acoustic waves propagating through the film.
View Article and Find Full Text PDFThe preparation of Al-doped ZnO thermal decomposition of crystalline precursors, with a particular emphasis on kinetic effects on the solubility limits, was studied. The promoting effect of Al on the catalyst system is discussed for methanol synthesis where ZnO:Al is employed as a support material for copper nanoparticles. The synthesis of the Al-doped zinc oxides in this study was inspired by the industrial synthesis of the methanol synthesis catalyst a co-precipitated crystalline precursor, here: hydrozincite Zn(OH)(CO).
View Article and Find Full Text PDFA novel combined setup of a Haberland type gas aggregation source and a secondary radio frequency discharge is used to generate, confine, and coat nanoparticles over much longer time scales than traditional in-flight treatment. The process is precisely monitored using localized surface plasmon resonance and Fourier-transform infrared spectroscopy as diagnostics. They indicate that both untreated and treated particles can be confined for extended time periods (at least one hour) with minimal losses.
View Article and Find Full Text PDFThe material design of functional "aero"-networks offers a facile approach to optical, catalytical, or and electrochemical applications based on multiscale morphologies, high large reactive area, and prominent material diversity. Here in this paper, the synthesis and structural characterization of a hybrid β-Ga O /ZnGa O nanocomposite aero-network are presented. The nanocomposite networks are studied on multiscale with respect to their micro- and nanostructure by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and are characterized for their photoluminescent response to UV light excitation and their electrochemical performance with Li-ion conversion reaction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
The discovery of ferroelectricity in aluminum scandium nitride (AlScN) opens technological perspectives for harsh environments and space-related memory applications, considering the high-temperature stability of piezoelectricity in aluminum nitride. The ferroelectric and material properties of 100 nm-thick AlScN are studied up to 873 K, combining both electrical and in situ X-ray diffraction measurements as well as transmission electron microscopy and energy-dispersive X-ray spectroscopy. The present work demonstrates that AlScN can achieve high switching polarization and tunable coercive fields in a 375 K temperature range from room temperature up to 673 K.
View Article and Find Full Text PDFAccurately measuring the size, morphology, and structure of nanoparticles is very important, because they are strongly dependent on their properties for many applications. In this paper, we present a deep-learning based method for nanoparticle measurement and classification trained from a small data set of scanning transmission electron microscopy images including overlapping nanoparticles. Our approach is comprised of two stages: localization, i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
Fast detection of hydrogen gas leakage or its release in different environments, especially in large electric vehicle batteries, is a major challenge for sensing applications. In this study, the morphological, structural, chemical, optical, and electronic characterizations of ZnO:Eu nanowire arrays are reported and discussed in detail. In particular, the influence of different Eu concentrations during electrochemical deposition was investigated together with the sensing properties and mechanism.
View Article and Find Full Text PDFFerroelectric thin films of wurtzite-type aluminum scandium nitride (Al1−xScxN) are promising candidates for non-volatile memory applications and high-temperature sensors due to their outstanding functional and thermal stability exceeding most other ferroelectric thin film materials. In this work, the thermal expansion along with the temperature stability and its interrelated effects have been investigated for Al1−xScxN thin films on sapphire Al2O3(0001) with Sc concentrations x (x = 0, 0.09, 0.
View Article and Find Full Text PDFMonitoring volatile organic compounds (VOCs) in harsh environments, especially for safety applications, is a growing field that requires specialized sensor structures. In this work, we demonstrate the sensing properties toward the most common VOCs of columnar AlO/ZnO heterolayer-based sensors. We have also developed an approach to tune the sensor selectivity by changing the thickness of the exposed amorphous AlO layer from 5 to 18 nm.
View Article and Find Full Text PDFIn this work, we present a method for growing highly -axis oriented aluminum scandium nitride (AlScN) thin films on (100) silicon (Si), silicon dioxide (SiO) and epitaxial polysilicon (poly-Si) substrates using a substrate independent approach. The presented method offers great advantages in applications such as piezoelectric thin-film-based surface acoustic wave devices where a metallic seed layer cannot be used. The approach relies on a thin AlN layer to establish a wurtzite nucleation layer for the growth of -AlScN films.
View Article and Find Full Text PDFMicromachines (Basel)
May 2022
Monolithic integration of permanent micromagnets into MEMS structures offers many advantages in magnetic MEMS applications. A novel technique called PowderMEMS, based on the agglomeration of micron-sized powders by atomic layer deposition (ALD), has been used to fabricate permanent micromagnets on 8-inch wafers. In this paper, we report the fabrication and magnetic characterization of PowderMEMS micromagnets prepared from two different NdFeB powder particle sizes.
View Article and Find Full Text PDFHere, we report on the time dependence of a synthesis procedure for generation of both n- and p-type bismuth telluride-based materials. To initiate the reaction, the starting materials were first mechanical pre-reacted. The Rietveld refinements of X-ray diffraction (XRD) data collected after different milling times demonstrate that BiTe was formed after only 10 min, and longer milling times do not alter the composition.
View Article and Find Full Text PDFVarious electrode materials are considered for sodium-ion batteries (SIBs) and one important prerequisite for developments of SIBs is a detailed understanding about charge storage mechanisms. Herein, we present a rigorous study about Na storage properties of ultra-small FeS nanoparticles, synthesized applying a solvothermal route, which exhibit a very good electrochemical performance as anode material for SIBs. A closer look into electrochemical reaction pathways on the nanoscale, utilizing synchrotron-based X-ray diffraction and X-ray absorption techniques, reveals a complicated conversion mechanism.
View Article and Find Full Text PDF