Neuromorphic systems are designed with careful consideration of the physical properties of the computational substrate they use. Neuromorphic engineers often exploit physical phenomena to directly implement a desired functionality, enabled by "the isomorphism between physical processes in different media" (Douglas et al., 1995).
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
July 2020
Camera sensors rely on global or rolling shutter functions to expose an image. This fixed function approach severely limits the sensors' ability to capture high-dynamic-range (HDR) scenes and resolve high-speed dynamics. Spatially varying pixel exposures have been introduced as a powerful computational photography approach to optically encode irradiance on a sensor and computationally recover additional information of a scene, but existing approaches rely on heuristic coding schemes and bulky spatial light modulators to optically implement these exposure functions.
View Article and Find Full Text PDFMemristive devices represent a promising technology for building neuromorphic electronic systems. In addition to their compactness and non-volatility, they are characterized by their computationally relevant physical properties, such as their state-dependence, non-linear conductance changes, and intrinsic variability in both their switching threshold and conductance values, that make them ideal devices for emulating the bio-physics of real synapses. In this paper we present a spiking neural network architecture that supports the use of memristive devices as synaptic elements and propose mixed-signal analog-digital interfacing circuits that mitigate the effect of variability in their conductance values and exploit their variability in the switching threshold for implementing stochastic learning.
View Article and Find Full Text PDFConstraint satisfaction problems are ubiquitous in many domains. They are typically solved using conventional digital computing architectures that do not reflect the distributed nature of many of these problems, and are thus ill-suited for solving them. Here we present a parallel analogue/digital hardware architecture specifically designed to solve such problems.
View Article and Find Full Text PDFGamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits, yet its computational role remains elusive. We show that a model of gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example.
View Article and Find Full Text PDF