Publications by authors named "Lorena Torres-Martinez"

Microbiota comprise the bulk of life's diversity, yet we know little about how populations of microbes accumulate adaptive diversity across natural landscapes. Adaptation to stressful soil conditions in plants provides seminal examples of adaptation in response to natural selection via allelic substitution. For microbes symbiotic with plants however, horizontal gene transfer allows for adaptation via gene gain and loss, which could generate fundamentally different evolutionary dynamics.

View Article and Find Full Text PDF

The capacity of beneficial microbes to compete for host infection-and the ability of hosts to discriminate among them-introduces evolutionary conflict that is predicted to destabilize mutualism. We investigated fitness outcomes in associations between legumes and their symbiotic rhizobia to characterize fitness impacts of microbial competition. Diverse Bradyrhizobium strains varying in their capacity to fix nitrogen symbiotically with a common host plant, Acmispon strigosus, were tested in full-factorial coinoculation experiments involving 28 pairwise strain combinations.

View Article and Find Full Text PDF

Although it is becoming widely appreciated that microbes can enhance plant tolerance to environmental stress, the nature of microbial mediation of exposure responses is not well understood. We addressed this deficit by examining whether microbial mediation of plant responses to elevated salinity is contingent on the environment and factors intrinsic to the host. We evaluated the influence of contrasting environmental conditions relative to host genotype, provenance and evolution by conducting a common-garden experiment utilizing ancestral and descendant cohorts of Schoenoplectus americanus genotypes recovered from two 100+ year coastal marsh seed banks.

View Article and Find Full Text PDF

Modern agriculture intensely selects aboveground plant structures, while often neglecting belowground features, and evolutionary tradeoffs between these traits are predicted to disrupt host control over microbiota. Moreover, drift, inbreeding, and relaxed selection for symbiosis in crops might degrade plant mechanisms that support beneficial microbes. We studied the impact of domestication on the nitrogen-fixing symbiosis between cowpea and root-nodulating Bradyrhizobium.

View Article and Find Full Text PDF

Specialization in mutualisms is thought to be a major driver of diversification, but few studies have explored how novel specialization evolves, or its relation to the evolution of other niche axes. A fundamental question is whether generalist interactions evolve to become more specialized (i.e.

View Article and Find Full Text PDF

Performance curves are valuable tools for quantifying the fundamental niches of organisms and testing hypotheses about evolution, life-history trade-offs, and the drivers of variation in species' distribution patterns. Here, we present a novel Bayesian method for characterizing performance curves that facilitates comparisons among species. We then use this model to quantify and compare the hydrological performance curves of 14 different taxa in the genus Lasthenia, an ecologically diverse clade of plants that collectively occupy a variety of habitats with unique hydrological features, including seasonally flooded wetlands called vernal pools.

View Article and Find Full Text PDF

The frequency and magnitude of extreme climate events are increasing with global change, yet we lack predictions and empirical evidence for the ability of wild populations to persist and adapt in response to these events. Here, we used Fisher's Fundamental Theorem of Natural Selection to evaluate the adaptive potential of Lasthenia fremontii, a herbaceous winter annual that is endemic to seasonally flooded wetlands in California, to alternative flooding regimes that occur during El Niño Southern Oscillation (ENSO) events. The results indicate that populations may exhibit greater adaptive potential in response to dry years than wet years, and that the relative performance of populations will change across climate scenarios.

View Article and Find Full Text PDF

Background And Aims: Many locally endemic species in biodiversity hotspots are restricted to edaphic conditions that are fixed in the landscape, limiting their potential to track climate change through dispersal. Instead, such species experience strong selection for germination strategies that can track suitable conditions through time. Germination strategies were compared among populations across the geographic range of a California vernal pool annual, Lasthenia fremontii Local germination strategies were tested to determine the associations with geographic variation in precipitation patterns.

View Article and Find Full Text PDF