We report the synthesis and biological evaluation of a series of (-)-englerin A analogues obtained along our previously reported synthetic route based on a stereoselective gold(I) cycloaddition process. This synthetic route is a convenient platform to access analogues with broad structural diversity and has led us to the discovery of unprecedented and easier-to-synthesize derivatives with an unsaturation in the cyclopentyl ring between C4 and C5. We also introduce novel analogues in which the original isopropyl motif has been substituted with cyclohexyl, phenyl, and cyclopropyl moieties.
View Article and Find Full Text PDFBecause of the frequent occurrence of cyclopentane subunits in bioactive compounds, the development of efficient catalytic asymmetric methods for their synthesis is an important objective. Introduced herein is a new family of chiral nucleophilic catalysts, biphenyl-derived phosphepines, and we apply them to an enantioselective variant of a useful [4+1] annulation. A range of one-carbon coupling partners can be employed, thereby generating cyclopentenes which bear a fully substituted stereocenter [either all-carbon or heteroatom-substituted (sulfur and phosphorus)].
View Article and Find Full Text PDFThe copper(I)-catalyzed reaction of alkenyldiazoacetates and iminoiodinanes affords functionalized azetine derivatives. This process is consistent with the formation of an aziridinyldiazoacetate intermediate, which gives rise to the four-membered heterocycles by metal-catalyzed ring expansion. The resulting azetine structure is a direct precursor of azeditine-2-carboxylic acid derivatives (EWG = electron-withdrawing group).
View Article and Find Full Text PDFThe copper(II)-catalyzed reaction of alkenyldiazo compounds with iodosylbenzene leading to β-oxodiazo derivatives is reported. This process occurs via an unprecedented 1,2-shift of the diazoacetate function. A selection of the synthetic applications of a representative member of this new class of functionalized diazo derivatives in the regioselective synthesis of substituted 1,4-dicarbonyl compounds is also reported.
View Article and Find Full Text PDFThe copper(I)-catalyzed regioselective [3 + 2] cyclization of pyridines toward alkenyldiazoacetates leading to functionalized indolizine derivatives is reported. A broad range of pyridine derivatives (including quinoline and isoquinoline) is compatible with this cyclization reaction. The process represents the first successful example of metal-catalyzed cyclization of a π-deficient heterocyclic system with alkenyldiazo compounds.
View Article and Find Full Text PDFPolysubstituted furan derivatives are regioselective obtained from (bis-alkynyl)methyl carboxylates in the presence of catalytic amounts of copper(I) salts. This multistep process is consistent with the intermediacy of a copper(I) (2-furyl)carbene complex which is intercepted by suitable trapping reagents.
View Article and Find Full Text PDFA broad range of substituted 2-cyclopentenone derivatives 3-6 are synthesized by the nickel(0)-mediated [3 + 2] cyclization reaction of chromium alkenyl(methoxy)carbene complexes 1 and internal alkynes 2. The reaction takes place with complete regioselectivity with both unactivated alkynes and activated alkynes (electron-withdrawing and electron-donating substituted alkynes). Representative cycloadducts containing boron and tin substituents are further demonstrated to be active partners in classical Pd-catalyzed C-C coupling processes to allow the production of 2-aryl- and 2-alkynyl-substituted cyclopentenones 9-13.
View Article and Find Full Text PDF