The binding affinity of therapeutic oligonucleotides (ONs) for their cognate RNA is determined by the rates of association () and dissociation (). Single-stranded ONs are highly flexible and can adopt multiple conformations in solution, some of which may not be conducive for hybridization. We investigated if restricting rotation around the sugar-phosphate backbone, by tethering two adjacent backbone phosphonate esters using hydrocarbon bridges, can modulate hybridization kinetics of the modified ONs for complementary RNA.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2019
The synthesis of constrained nucleosides has become an important tool to understand the SAR in the interaction between biological and synthetic nucleotides in the context of antisense oligonucleotide therapy. The incorporation of a cyclopropane into a furanose ring of a nucleoside induces some degree of constrain without affecting significantly the steric environment of a nucleoside. Here, we report a new, short and stereocontrolled synthesis of two constrained nucleosides analogues, 1',2'- methano-2',3'-dideoxyuridine 9, and the corresponding cytidine analog 12.
View Article and Find Full Text PDFThe anticancer nucleoside 5-fluoro 2'-deoxyuridine-5'-phosphate (5-FdU-P) was attached via an amide chain linker to a triantennary GalNAc cluster as a means to deliver the drug to hepatic cells that recognize the amino sugar units.
View Article and Find Full Text PDF