Quantitative estimations of spatiotemporal complexity of cortical activity patterns are used in the clinic as a measure of consciousness levels, but the cortical mechanisms involved are not fully understood. We used a version of the perturbational complexity index (PCI) adapted to multisite recordings from the ferret (either sex) cerebral cortex (sPCI) to investigate the role of GABAergic inhibition in cortical complexity. We studied two dynamical states: slow-wave activity (synchronous state) and desynchronized activity, that express low and high causal complexity respectively.
View Article and Find Full Text PDFThe ability of different groups of cortical neurons to engage in causal interactions that are at once differentiated and integrated results in complex dynamic patterns. Complexity is low during periods of unconsciousness (deep sleep, anesthesia, unresponsive wakefulness syndrome) in which the brain tends to generate a stereotypical pattern consisting of alternating active and silent periods of neural activity-slow oscillations- and is high during wakefulness. But how is cortical complexity built up? Is it a continuum? An open question is whether cortical complexity can vary within the same brain state.
View Article and Find Full Text PDFImmersive virtual reality is widely used for research and clinical purposes. Here we explored the impact of an immersive virtual scene of intimate partner violence experienced from the victim's perspective (first person), as opposed to witnessing it as an observer (third person). We are ultimately interested in the potential of this approach to rehabilitate batterers and in understanding the mechanisms underlying this process.
View Article and Find Full Text PDFThe 3xTg-AD mouse model reproduces the main features associated with the etiology of familial Alzheimer's disease (AD). To investigate whether these features imply functional cortical network alterations and their evolution with age, we studied spontaneous slow oscillations, activity that integrates cellular and network properties. We quantified different parameters of the emergent slow oscillations-alternating Up and Down states-and of the embedded beta-gamma rhythms of 3xTg-AD and wild-type mice at 7 and 20 months of age.
View Article and Find Full Text PDFNMDA receptor (NMDAr) hypofunction has been widely used as a schizophrenia model. Decreased activation of NMDAr is associated with a disrupted excitation/inhibition balance in the prefrontal cortex and with alterations in gamma synchronization. Our aim was to investigate whether this phenomenon could be reproduced in the spontaneous oscillatory activity generated by the local prefrontal network in vitro and, if so, to explore the effects of antipsychotics on the resulting activity.
View Article and Find Full Text PDFThe senescence-accelerated mouse prone 8 (SAMP8) model is characterized by accelerated, progressive cognitive decline as well as Alzheimer's disease (AD)-like neurodegenerative changes, and resembles the etiology of multicausal, sporadic late-onset/age-related AD in humans. Our aim was to find whether these AD-like pathological features, together with the cognitive deficits present in the SAMP8 strain, are accompanied by disturbances in cortical network activity with respect to control mice (SAM resistance 1, SAMR1) and, if so, how the alterations in cortical activity progress with age. For this purpose, we characterized the extracellular spontaneous oscillatory activity in different regions of the cerebral cortex of SAMP8 and SAMR1 mice under ketamine anesthesia at 5 and 7 months of age.
View Article and Find Full Text PDFUnlabelled: The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected.
View Article and Find Full Text PDFPhysicochemical characteristics (weight, length, width, thickness, moisture, Brix degree, total fiber, protein, ash, pH, acidity, ascorbic acid, total phenolic compounds, P, Na, K, Ca, Mg, Fe, Cu, Zn, Mn and Cr) were determined in cactus pads from Opuntia dillenii and Opuntia ficus indica. The physicochemical characteristics of both species were clearly different. There were important differences between the orange and green fruit pulp of O.
View Article and Find Full Text PDFNeural correlates of spatial representation can be found in the activity of the hippocampal place cells. These neurons are characterized by firing whenever the animal is located in a particular area of the space, the place field. Place fields are modulated by sensory cues, such as visual, auditory, or olfactory cues, being the influence of visual inputs the most thoroughly studied.
View Article and Find Full Text PDF