Fatigue deteriorates the performance of a brain-computer interface (BCI) system; thus, reliable detection of fatigue is the first step to counter this problem. The fatigue evaluated by means of electroencephalographic (EEG) signals has been studied in many research projects, but widely different results have been reported. Moreover, there is scant research when considering the fatigue on steady-state visually evoked potential (SSVEP)-based BCI.
View Article and Find Full Text PDFEpilepsy is a brain disorder that affects about 1% of the population in the world. Seizure detection is an important component in both the diagnosis of epilepsy and seizure control. In this work a patient non-specific strategy for seizure detection based on Stationary Wavelet Transform of EEG signals is developed.
View Article and Find Full Text PDFObjective: People with disabilities may control devices such as a computer or a wheelchair by means of a brain-computer interface (BCI). BCI based on steady-state visual evoked potentials (SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from the 'Midas touch effect', i.
View Article and Find Full Text PDFEpilepsy is a neurological disorder which affects nearly 1.5% of the world׳s total population. Trained physicians and neurologists visually scan the long-term electroencephalographic (EEG) records to identify epileptic seizures.
View Article and Find Full Text PDFDrowsiness is one of the main causal factors in many traffic accidents due to the clear decline in the attention and recognition of danger drivers, diminishing vehicle-handling abilities. The aim of this research is to develop an automatic method to detect the drowsiness stage in EEG records using time, spectral and wavelet analysis. A total of 19 features were computed from only one EEG channel to differentiate the alertness and drowsiness stages.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
Epilepsy is a neurological disorder that affects around 50 million people worldwide. The seizure detection is an important tool for the diagnosis of epilepsy. In this study, an epileptic seizure classification method based on features of the Empirical Mode Decomposition (EMD) of EEG records is proposed.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
A simple algorithm to automatically detect segments with epileptic seizures in long EEG records has been developed. The main advantages of the proposed method are: the simple algorithm used and the lower computational cost. The algorithm measures the energy of each EEG channel by a sliding window and calculates some features of each patient signal to detect the epileptic seizure.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2010
Epilepsy is a neurological disorder that affects around 50 million people worldwide. The seizure detection is an important component in the diagnosis of epilepsy. In this study, the Empirical Mode Decomposition (EMD) method was proposed on the development of an automatic epileptic seizure detection algorithm.
View Article and Find Full Text PDF