Publications by authors named "Lorena Navigatore Fonzo"

Disruption of circadian rhythms contributes to deficits in cognitive functions during aging. Up to date, the biochemical, molecular and chronobiological bases of such deterioration have not been completely elucidated. Here, we aim: 1) to investigate the endogenous nature of 24 h-rhythms of antioxidant defenses, oxidative stress, clocḱ's, and neurotrophic factors expression, in the rat temporal cortex (TC), and 2) to study the consequences of aging on the circadian organization of those factors.

View Article and Find Full Text PDF

Alzheimer's dementia (AD) is a neurodegenerative disorder that causes memory loss and dementia in older adults. Intracellular accumulation of Aβ causes an imbalance in the oxidative status and cognitive dysfunctions. Besides oxidative stress and loss of memory, Alzheimer's patients show dysfunction of the circadian rhythms.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia characterized by a gradual impairment in cognitive functions. Recent research have shown that TNF-α is a proinflammatory cytokine implicated in the pathogenesis of neurodegenerative diseases, such as AD. Besides cognitive deficit, AD patients show alterations in their circadian rhythms.

View Article and Find Full Text PDF

Alzheimer disease (AD) is the most frequent form of dementia in the elderly. It is characterized by the deterioration of memory and learning. The histopathological hallmarks of AD include the presence of extracellular deposits of amyloid beta peptide, intracellular neurofibrillary tangles, neuron and synapse loss, in the brain, including the hippocampus.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a devastating disease characterized by loss of synapses and neurons in the elderly. Accumulation of the β-amyloid peptide (Aβ) in the brain is thought to be central to the pathogenesis of AD. ApoE plays a key role in normal and physiological clearance of Aß, since it facilitates the peptide intra- and extracellular proteolytic degradation.

View Article and Find Full Text PDF

Accumulation of amyloid peptides in the brain plays a key role in the pathogenesis of Alzheimer's disease (AD). Aggregated beta-amyloid (Aβ) peptide increases intracellular reactive oxygen species associated to a deficient antioxidant defense system. Prefrontal cortex plays a key role in memory and learning and is especially susceptible to oxidative stress.

View Article and Find Full Text PDF

One of the main pathological features in the Alzheimer disease (AD) is the presence of senile plaques, primarily composed of Aβ peptide aggregates, in cortex and hippocampus. AD late onset, which constitutes 90% of cases, could be mainly attributable to deficiencies in the clearance of the Aß peptide. Here we show that expression of Aβ-degrading enzymes varies on a daily basis in the hippocampus.

View Article and Find Full Text PDF

The accumulation of amyloid-β (Aβ) peptides in the brain of Alzheimer disease patients is associated to cognitive deficit, increased oxidative stress, and alterations in the circadian rhythms. Brain-derived neurotrophic factor (BDNF) and Neurogranin (RC3), play an important role in the synaptic plasticity underlying memory and learning. Previously, we observed BDNF and RC3 expression follow a daily rhythmic pattern in the hippocampus of young rats.

View Article and Find Full Text PDF

Aging brain undergoes several changes leading to a decline in cognitive functions. Memory and learning-related genes such as Creb, Bdnf and its receptor TrkB, are expressed in different brain regions including prefrontal cortex. Those genes' proteins regulate a wide range of functions such as synaptic plasticity and long-term potentiation.

View Article and Find Full Text PDF

The main external time giver is the day-night cycle; however, signals from feeding and the activity/rest cycles can entrain peripheral clocks, such as the hippocampus, in the absence of light. Knowing that vitamin A and its derivatives, the retinoids, may act as regulators of the endogenous clock activity, we hypothesized that the nutritional deficiency of vitamin A may influence the locomotor activity rhythm as well as the endogenous circadian patterns of clock genes in the rat hippocampus. Locomotor activity was recorded during the last week of the treatment period.

View Article and Find Full Text PDF

Objectives: Alterations in enzymatic antioxidant defense systems lead to a deficit of cognitive functions and altered hippocampal synaptic plasticity. The objectives of this study were to investigate endogenous rhythms of catalase (CAT) and glutathione peroxidase (GPx) expression and activity, as well as CREB1 mRNA, in the rat hippocampus, and to evaluate to which extent the vitamin A deficiency could affect those temporal patterns.

Methods: Rats from control and vitamin A-deficient (VAD) groups received a diet containing 4000 IU of vitamin A/kg diet, or the same diet devoid of vitamin A, respectively, during 3 months.

View Article and Find Full Text PDF

An endogenous time-keeping mechanism controls circadian biological rhythms in mammals. Previously, we showed that vitamin A deficiency modifies clock BMAL1 and PER1 as well as BDNF and neurogranin daily rhythmicity in the rat hippocampus when animals are maintained under 12-h-light:12-h-dark conditions. Retinoic acid nuclear receptors, retinoic acid receptors (RARs) and retinoid X receptors (RXRs), have been detected in the same brain area.

View Article and Find Full Text PDF

The circadian expression of clock and clock-controlled cognition-related genes in the hippocampus would be essential to achieve an optimal daily cognitive performance. There is some evidence that retinoid nuclear receptors (RARs and RXRs) can regulate circadian gene expression in different tissues. In this study, Holtzman male rats from control and vitamin A-deficient groups were sacrificed throughout a 24-h period and hippocampus samples were isolated every 4 or 5 h.

View Article and Find Full Text PDF