Aβ (1-40) can transfer from the aqueous phase to the bilayer and thus form stable ion-channel-like pores where the protein has alpha-helical conformation. The stability of the pores is due to the presence of the GXXXG motif. It has been reported that these ion-channel-like pores are stabilized by a Cα-H···O hydrogen bond that is established between a glycine of the GXXXG sequence of an alpha-helix and another amino acid of a vicinal alpha-helix.
View Article and Find Full Text PDFA nanodelivery system based on palladium nanoparticles (PdNP) and cisplatin (CisPt) was developed by physisorption of the drug onto the PdNP synthesized via a green redox process, using d-glucose and polyvinylpyrrolidone (PVP) as reducing and stabilizing/capping agents, respectively. UV-vis analysis and H-evolution measurements were carried out to prove the nanoparticles' capability to act as bimodal theranostic nanomedicine, i.e.
View Article and Find Full Text PDFPolymer-based systems have been demonstrated in novel therapeutic and diagnostic (theranostic) treatments for cancer and other diseases. Polymers provide a useful scaffold to develop multifunctional nanosystems that combine various beneficial properties such as drug delivery, bioavailability, and photosensitivity. For example, to provide passive tumour targeting of small drug molecules, polymers have been used to modify and functionalise the surface of water-insoluble drugs.
View Article and Find Full Text PDFAngiogenin (Ang) is a potent angiogenic protein that is overexpressed in many types of cancer at concentration values correlated to the tumor aggressiveness. Here, by means of an integrated multi-technique approach based on crystallographic, spectrometric and spectroscopic analyses, we demonstrate that the anti-cancer drug oxaliplatin efficiently binds angiogenin. Microscopy cellular studies, carried out on the prostate cancer cell (PC-3) line , show that oxaliplatin inhibits the angiogenin prompting effect on cell proliferation and migration, which are typical features of angiogenesis process.
View Article and Find Full Text PDFAngiogenesis plays a key role in the wound healing process, involving the migration, growth, and differentiation of endothelial cells. Angiogenesis is controlled by a strict balance of different factors, and among these, the angiogenin protein plays a relevant role. Angiogenin is a secreted protein member of the ribonuclease superfamily that is taken up by cells and translocated to the nucleus when the process of blood vessel formation has to be promoted.
View Article and Find Full Text PDFNowdays, neurodegenerative diseases represent a great challenge from both the therapeutic and diagnostic points of view. Indeed, several physiological barriers of the body, including the blood brain barrier (BBB), nasal, dermal, and intestinal barriers, interpose between the development of new drugs and their effective administration to reach the target organ or target cells at therapeutic concentrations. Currently, the nose-to-brain delivery with nanoformulations specifically designed for intranasal administration is a strategy widely investigated with the goal to reach the brain while bypassing the BBB.
View Article and Find Full Text PDFThe angiogenin protein (ANG) is one of the most potent endogenous angiogenic factors. In this work we characterized by means of potentiometric, spectroscopic and voltammetric techniques, the copper complex species formed with peptide fragments derived from the N-terminal domain of the protein, encompassing the sequence 1-17 and having free amino, Ang1-17, or acetylated N-terminus group, AcAng1-17, so to explore the role of amino group in metal binding and cellular copper uptake. The obtained data show that amino group is the main copper anchoring site for Ang1-17.
View Article and Find Full Text PDFIn this work, we aimed to develop a hybrid theranostic nano-formulation based on gold nanoparticles (AuNP)-having a known anti-angiogenic character-and the angiogenin (ANG), in order to tune the angiogenesis-related phases involved in the multifaceted process of the wound healing. To this purpose, spherical were surface "decorated" with three variants of the protein, namely, the recombinant (rANG), the wild-type, physiologically present in the human plasma (wtANG) and a new mutant with a cysteine substitution of the serine at the residue 28 (S28CANG). The hybrid biointerface between AuNP and ANG was scrutinized by a multi-technique approach based on dynamic light scattering, spectroscopic (UV-visible, circular dichroism) and microscopic (atomic force and laser scanning confocal) techniques.
View Article and Find Full Text PDFGraphene oxide (GO) is a bidimensional novel material that exhibits high biocompatibility and angiogenic properties, mostly related to the intracellular formation of reactive oxygen species (ROS). In this work, we set up an experimental methodology for the fabrication of GO@peptide hybrids by the immobilization, via irreversible physical adsorption, of the Ac-(GHHPH)-NH peptide sequence, known to mimic the anti-angiogenic domain of the histidine-proline-rich glycoprotein (HPRG). The anti-proliferative capability of the graphene-peptide hybrids were tested in vitro by viability assays on prostate cancer cells (PC-3 line), human neuroblastoma (SH-SY5Y), and human retinal endothelial cells (primary HREC).
View Article and Find Full Text PDFEngineered graphene-based derivatives are attractive and promising candidates for nanomedicine applications because of their versatility as 2D nanomaterials. However, the safe application of these materials needs to solve the still unanswered issue of graphene nanotoxicity. In this work, we investigated the self-assembly of dityrosine peptides driven by graphene oxide (GO) and/or copper ions in the comparison with the more hydrophobic diphenylalanine dipeptide.
View Article and Find Full Text PDFIn this study, a novel multifunctional nanoplatform based on core-shell nanoparticles of spherical gold nanoparticles (AuNPs) capped with low and high molecular weight (200 and 700 kDa) hyaluronic acid (HA), was assembled via a green, one-pot redox synthesis method at room temperature. A multitechnique characterization approach by UV-visible spectroscopy, dynamic light scattering and atomic force microscopy pointed to the effective 'surface decoration' of the gold nanoparticles by HA, resulting in different grafting densities of the biopolymer chains at the surface of the metal nanoparticle, which in turn affected the physicochemical properties of the nanoparticles. Specifically, the spectral features of the gold plasmonic peak (and the related calculated optical size), the hydrodynamic diameter and the nanoparticle stability were found to depend on the molecular weight of the HA.
View Article and Find Full Text PDFThe opossum is a peculiar model of immunity to prion diseases. Here we scrutinised the bis-decarepeat peptide sequence of the opossum prion (Op_bis-deca) protein by a multitechnique approach, with a combined experimental (potentiometry, UV-visible, circular dichroism, NMR and EPR spectroscopy, quartz crystal microbalance with dissipation monitoring and confocal microscopy) and simulation (DFT calculations) approach. Results showed that the macrochelate structures formed upon the binding to Cu(ii) by the analogous bis-octarepeat peptide sequence of human prion (Hu_bis-octa) are not found in the case of Op_bis-deca.
View Article and Find Full Text PDFAngiogenin (ANG), an endogenous protein that plays a key role in cell growth and survival, has been scrutinised here as promising nanomedicine tool for the modulation of pro-/anti-angiogenic processes in brain cancer therapy. Specifically, peptide fragments from the putative cell membrane binding domain (residues 60-68) of the protein were used in this study to obtain peptide-functionalised spherical gold nanoparticles (AuNPs) of about 10 nm and 30 nm in optical and hydrodynamic size, respectively. Different hybrid biointerfaces were fabricated by peptide physical adsorption (Ang) or chemisorption (the cysteine analogous AngCys) at the metal nanoparticle surface, and cellular assays were performed in the comparison with ANG-functionalised AuNPs.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFAngiogenin is a protein crucial in angiogenesis, and it is overexpressed in many cancers and downregulated in neurodegenerative diseases, respectively. The protein interaction with actin, through the loop encompassing the 60-68 residues, is an essential step in the cellular cytoskeleton reorganization. This, in turn, influences the cell proliferation and migration processes.
View Article and Find Full Text PDFThe repeated use of conventional synthetic pesticides in crop protection leads to resistance development by pests along with a negative impact on the environment, particularly non-target arthropods. Plant-derived active compounds, such as essential oils (EOs), play a key role in sustainably controlling pests. The lethal and sublethal activity of citrus peel EOs as emulsions and included in polyethylene glycol (PEG) nanoparticles (EO-NPs) was determined against the invasive tomato pest Tuta absoluta.
View Article and Find Full Text PDF